login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050983 de Bruijn's S(4,n). 7
1, 14, 786, 61340, 5562130, 549676764, 57440496036, 6242164112184, 698300344311570, 79881547652046140, 9301427008157320036, 1098786921802152516024, 131361675994216221116836, 15863471168011822803270200, 1932252897656224864335299400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is divisible by (n+1). Prime p divides a(p-1). Prime p>2 divides all a(n) from a((p+1)/2) to a(p-1). - Alexander Adamchuk, Jul 05 2006

REFERENCES

N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.

LINKS

Table of n, a(n) for n=0..14.

Eric Weisstein's World of Mathematics, Binomial Sums

FORMULA

a(n) = Sum_{k=-n..+n} (-1)^k*C(2*n,n+k)^4. - Benoit Cloitre, Mar 02 2005

a(n) = (-1)^n * HypergeometricPFQ[ {-2n, -2n, -2n, -2n}, {1, 1, 1}, -1]. - Alexander Adamchuk, Jul 05 2006

E.g.f.: Sum(n>=0,I^n*x^n/n!^4) * Sum(n>=0,(-I)^n*x^n/n!^4) = Sum(n>=0,a(n)*x^(2*n)/n!^4) where I^2=-1. - Paul D. Hanna, Dec 21 2011

a(n) ~ 0.125 k^(8n+3)/(Pi*n)^(3/2) where k = 2 cos(Pi/8) = A179260. This formula is due to de Bruijn 1958. - Charles R Greathouse IV, Dec 28 2011

Recurrence: a(0) = 1, a(1) = 14, 4 * (n + 1) * (2*n + 1)^3 * (48*n^2 + 162*n + 137) * a(n) + (n + 2)^3 * (2*n + 3) * (48*n^2 + 66*n + 23) * a(n+2) = 2 * (4 * (n + 1)^2 * (2*n + 3)^2 * (408*n^2 + 969*n + 431) - (n + 1) * (2*n + 3) * (69*n + 31) + 57*n + 92) * a(n+1). - Vladimir Reshetnikov, Sep 26 2016

MATHEMATICA

Sum[ (-1)^(k+n)Binomial[ 2n, k ]^4, {k, 0, 2n} ]

RecurrenceTable[{a[0] == 1, a[1] == 14, 4 (n + 1) (2 n + 1)^3 (48 n^2 + 162 n + 137) a[n] + (n + 2)^3 (2 n + 3) (48 n^2 + 66 n + 23) a[n + 2] == 2 (4 (n + 1)^2 (2 n + 3)^2 (408 n^2 + 969 n + 431) - (n + 1) (2 n + 3) (69 n + 31) + 57 n + 92) a[n + 1]}, a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 26 2016 *)

PROG

(PARI) a(n)=sum(k=0, 2*n, (-1)^(k+n)*binomial(2*n, k)^4) \\ Charles R Greathouse IV, Dec 28 2011

CROSSREFS

Cf. A000984, A006480, A050984.

Sequence in context: A208254 A210817 A042519 * A183576 A002429 A064345

Adjacent sequences:  A050980 A050981 A050982 * A050984 A050985 A050986

KEYWORD

nonn

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)