OFFSET
0,2
COMMENTS
a(n) is divisible by (n+1). Prime p divides a(p-1). Prime p>2 divides all a(n) from a((p+1)/2) to a(p-1). - Alexander Adamchuk, Jul 05 2006
REFERENCES
N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..471
T. Amdeberhan, De Bruijn's sequence is odd iff n = 2m - 1: Part I, MathOverflow 383035.
Eric Weisstein's World of Mathematics, Binomial Sums
FORMULA
a(n) = Sum_{k=-n..+n} (-1)^k*C(2*n,n+k)^4. - Benoit Cloitre, Mar 02 2005
a(n) = (-1)^n * HypergeometricPFQ[ {-2n, -2n, -2n, -2n}, {1, 1, 1}, -1]. - Alexander Adamchuk, Jul 05 2006
E.g.f.: Sum(n>=0,I^n*x^n/n!^4) * Sum(n>=0,(-I)^n*x^n/n!^4) = Sum(n>=0,a(n)*x^(2*n)/n!^4) where I^2=-1. - Paul D. Hanna, Dec 21 2011
a(n) ~ 0.125 k^(8n+3)/(Pi*n)^(3/2) where k = 2 cos(Pi/8) = A179260. This formula is due to de Bruijn 1958. - Charles R Greathouse IV, Dec 28 2011
Recurrence: a(0) = 1, a(1) = 14, 4 * (n + 1) * (2*n + 1)^3 * (48*n^2 + 162*n + 137) * a(n) + (n + 2)^3 * (2*n + 3) * (48*n^2 + 66*n + 23) * a(n+2) = 2 * (4 * (n + 1)^2 * (2*n + 3)^2 * (408*n^2 + 969*n + 431) - (n + 1) * (2*n + 3) * (69*n + 31) + 57*n + 92) * a(n+1). - Vladimir Reshetnikov, Sep 26 2016
From Peter Bala, Nov 02 2024; (Start)
a(n) = 1/n * Sum_{k = 0..2*n} (-1)^(n+k) * k * binomial(2*n, k)^4 for n >= 1.
a(n) = binomial(2*n, n) * Sum_{k = 0..n} binomial(2*n, n+k)^2 * binomial(2*n+k,k) = binomial(2*n, n) * Sum_{k = 0..n} (-1)^(n+k) * binomial(2*n, n+k) * binomial(2*n+k, k)^2. (End)
MATHEMATICA
Sum[ (-1)^(k+n)Binomial[ 2n, k ]^4, {k, 0, 2n} ]
RecurrenceTable[{a[0] == 1, a[1] == 14, 4 (n + 1) (2 n + 1)^3 (48 n^2 + 162 n + 137) a[n] + (n + 2)^3 (2 n + 3) (48 n^2 + 66 n + 23) a[n + 2] == 2 (4 (n + 1)^2 (2 n + 3)^2 (408 n^2 + 969 n + 431) - (n + 1) (2 n + 3) (69 n + 31) + 57 n + 92) a[n + 1]}, a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 26 2016 *)
PROG
(PARI) a(n)=sum(k=0, 2*n, (-1)^(k+n)*binomial(2*n, k)^4) \\ Charles R Greathouse IV, Dec 28 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved