login
A022754
Expansion of 1/Product_{m>=1} (1 - m*q^m)^30.
2
1, 30, 525, 6850, 73500, 682656, 5663205, 42852150, 300202485, 1968839760, 12192045213, 71771729100, 403849667345, 2181900748410, 11361561151605, 57202802787016, 279230335572240, 1324656422161470
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 30, g(n) = n. - Seiichi Manyama, Aug 17 2023
LINKS
FORMULA
a(0) = 1; a(n) = (30/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 17 2023
CROSSREFS
Column k=30 of A297328.
Cf. A078308.
Sequence in context: A333648 A020926 A229563 * A050982 A004327 A270499
KEYWORD
nonn
STATUS
approved