login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050935 a(1)=0, a(2)=0, a(3)=1, a(n+1) = a(n) - a(n-2). 15
0, 0, 1, 1, 1, 0, -1, -2, -2, -1, 1, 3, 4, 3, 0, -4, -7, -7, -3, 4, 11, 14, 10, -1, -15, -25, -24, -9, 16, 40, 49, 33, -7, -56, -89, -82, -26, 63, 145, 171, 108, -37, -208, -316, -279, -71, 245, 524, 595, 350, -174, -769, -1119, -945, -176, 943, 1888, 2064, 1121, -767, -2831, -3952 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

The Ze3 sums, see A180662, of triangle A108299 equal the terms of this sequence without the two leading zeros. [Johannes W. Meijer, Aug 14 2011]

REFERENCES

R. Palmaccio, "Average Temperatures Modeled with Complex Numbers", Mathematics and Informatics Quarterly, pp. 9-17 of Vol. 3, No. 1, March 1993.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

José L. Ramírez, Víctor F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informaticae, 45 (2015) pp. 91-105.

Index entries for linear recurrences with constant coefficients, signature (1, 0, -1).

FORMULA

G.f. : x^2/(1-x+x^3); a(n+2) = sum{k=0..floor(n/3), binomial(n-2*k, k)*(-1)^k)} - Paul Barry, Oct 20 2004

G.f.: Q(0)*x^2/2 , where Q(k) = 1 + 1/(1 - x*(12*k-1 + x^2)/( x*(12*k+5 + x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 12 2013

MAPLE

A050935 := proc(n) option remember; if n <= 1 then 0 elif n = 2 then 1 else A050935(n-1)-A050935(n-3); fi; end: seq(A050935(n), n=0..61);

MATHEMATICA

LinearRecurrence[{1, 0, -1}, {0, 0, 1}, 70] (* Harvey P. Dale, Jan 30 2014 *)

PROG

(Haskell)

a050935 n = a050935_list !! (n-1)

a050935_list = 0 : 0 : 1 : zipWith (-) (drop 2 a050935_list) a050935_list

-- Reinhard Zumkeller, Jan 01 2012

(PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 0, 1]^(n-1)*[0; 0; 1])[1, 1] \\ Charles R Greathouse IV, Feb 06 2017

CROSSREFS

When run backwards this gives a signed version of A000931.

Cf. A099529.

Apart from signs, essentially the same as A078013.

Cf. A203400 (partial sums).

Sequence in context: A228371 A176971 A247917 * A104769 A078013 A086461

Adjacent sequences: A050932 A050933 A050934 * A050936 A050937 A050938

KEYWORD

easy,nice,sign

AUTHOR

Richard J. Palmaccio (palmacr(AT)pinecrest.edu), Dec 31 1999

EXTENSIONS

Offset fixed by Reinhard Zumkeller, Jan 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 19:07 EST 2022. Contains 358563 sequences. (Running on oeis4.)