|
|
A104769
|
|
G.f. -x/(1+x-x^3).
|
|
8
|
|
|
0, -1, 1, -1, 0, 1, -2, 2, -1, -1, 3, -4, 3, 0, -4, 7, -7, 3, 4, -11, 14, -10, -1, 15, -25, 24, -9, -16, 40, -49, 33, 7, -56, 89, -82, 26, 63, -145, 171, -108, -37, 208, -316, 279, -71, -245, 524, -595, 350, 174, -769, 1119, -945, 176, 943, -1888, 2064, -1121, -767, 2831, -3952
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
Generating floretion is "jesright".
Pisano period lengths: 1, 7, 13, 14, 24, 91, 48, 28, 39, 168, 120, 182, 183, 336, 312, 56, 288, 273, 180, 168,.. (which differs from A104217 for example at index 23). - R. J. Mathar, Aug 10 2012
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
Index entries for linear recurrences with constant coefficients, signature (-1,0,1).
|
|
FORMULA
|
a(n) = -A247917(n-1).
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 0, a(1) = -1, a(2) = 1.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5).
a(n) = ((-1)^n)*A050935(n+1) = ((-1)^n)*A078013(n+2).
a(n) = A104771(n) - A104770(n).
|
|
MATHEMATICA
|
LinearRecurrence[{-1, 0, 1}, {0, -1, 1}, 61] (* or *)
CoefficientList[Series[-x/(1 + x - x^3), {x, 0, 60}], x] (* Michael De Vlieger, Jul 02 2021 *)
|
|
PROG
|
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, -1]^n*[0; -1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
|
|
CROSSREFS
|
Apart from signs, essentially the same as A050935 and A078013.
Cf. A247917 (negative).
Cf. A000931, A057597.
Sequence in context: A176971 A247917 A050935 * A078013 A086461 A047089
Adjacent sequences: A104766 A104767 A104768 * A104770 A104771 A104772
|
|
KEYWORD
|
sign,easy,less
|
|
AUTHOR
|
Creighton Dement, Mar 24 2005
|
|
EXTENSIONS
|
Edited by Ralf Stephan, Apr 05 2009
|
|
STATUS
|
approved
|
|
|
|