

A104769


G.f. x/(1+xx^3).


7



0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 3, 4, 3, 0, 4, 7, 7, 3, 4, 11, 14, 10, 1, 15, 25, 24, 9, 16, 40, 49, 33, 7, 56, 89, 82, 26, 63, 145, 171, 108, 37, 208, 316, 279, 71, 245, 524, 595, 350, 174, 769, 1119, 945, 176, 943, 1888, 2064, 1121, 767, 2831, 3952
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


COMMENTS

Generating floretion is "jesright".
Pisano period lengths: 1, 7, 13, 14, 24, 91, 48, 28, 39, 168, 120, 182, 183, 336, 312, 56, 288, 273, 180, 168,.. (which differs from A104217 for example at index 23).  R. J. Mathar, Aug 10 2012


LINKS

Table of n, a(n) for n=0..60.
Index entries for linear recurrences with constant coefficients, signature (1,0,1).


FORMULA

a(n) = A247917(n1).
Recurrence: a(n+3) = a(n)  a(n+2); a(0) = 0, a(1) = 1, a(2) = 1.
a(n+1)  a(n) = ((1)^(n+1))*a(n+5).
a(n) = ((1)^n)*A050935(n+1) = ((1)^n)*A078013(n+2).
a(n) = A104771(n)  A104770(n).


PROG

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, 1]^n*[0; 1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015


CROSSREFS

Apart from signs, essentially the same as A050935 and A078013.
Cf. A247917 (negative).
Cf. A000931, A057597.
Sequence in context: A176971 A247917 A050935 * A078013 A086461 A047089
Adjacent sequences: A104766 A104767 A104768 * A104770 A104771 A104772


KEYWORD

sign,easy,less


AUTHOR

Creighton Dement, Mar 24 2005


EXTENSIONS

Edited by Ralf Stephan, Apr 05 2009


STATUS

approved



