login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176971 Expansion of (1+x)/(1+x-x^3) in powers of x. 4
1, 0, 0, 1, -1, 1, 0, -1, 2, -2, 1, 1, -3, 4, -3, 0, 4, -7, 7, -3, -4, 11, -14, 10, 1, -15, 25, -24, 9, 16, -40, 49, -33, -7, 56, -89, 82, -26, -63, 145, -171, 108, 37, -208, 316, -279, 71, 245, -524, 595 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Except for signs the sequence is the essentially same as A078013, A050935 and A104769.

LINKS

Table of n, a(n) for n=0..49.

Index entries for linear recurrences with constant coefficients, signature (-1,0,1). [From R. J. Mathar, Apr 30 2010]

FORMULA

a(n) = A000931(n)^2 -A000931(n-1)*A000931(n+1).

a(n) = -a(n-1) +a(n-3). [From R. J. Mathar, Apr 30 2010]

a(n) = -A104769(n) - A104769(n+1). - Ralf Stephan, Aug 18 2013

G.f.: 1 / (1 - x^3 / (1 + x)). - Michael Somos, Dec 13 2013

a(n) = A182097(-n). - Michael Somos, Dec 13 2013

A000931(n) = a(n)^2 - a(n-1) * a(n+1). - Michael Somos, Dec 13 2013

BINOMIAL transform is A005251(n+1). - Michael Somos, Dec 13 2013

EXAMPLE

G.f. = 1 + x^3 - x^4 + x^5 - x^7 + 2*x^8 - 2*x^9 + x^10 + x^11 - 3*x^12 + ...

MATHEMATICA

a[0] := 1; a[1] = 0; a[2] = 0;

a[n_] := a[n] = a[n - 2] + a[n - 3];

b = Table[a[n], {n, 0, 50}];

Table[b[[n]]^2 - b[[n - 1]]*b[[n + 1]], {n, 1, Length[b] - 1}]

a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 + x) / (1 + x - x^3), {x, 0, n}], SeriesCoefficient[ 1 / (1 - x^2 - x^3), {x, 0, Abs@n}]] (* Michael Somos, Dec 13 2013 *)

PROG

(PARI) {a(n) = if( n>=0, polcoeff( (1 + x) / (1 + x - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^-n), -n))} /* Michael Somos, Dec 13 2013 */

CROSSREFS

Cf. A000931, A005251, A104769, A182097.

Sequence in context: A036064 A090706 A228371 * A247917 A050935 A104769

Adjacent sequences:  A176968 A176969 A176970 * A176972 A176973 A176974

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, Apr 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 11:04 EST 2016. Contains 278776 sequences.