login
Expansion of (1+x)/(1+x-x^3) in powers of x.
7

%I #49 Sep 08 2022 08:45:53

%S 1,0,0,1,-1,1,0,-1,2,-2,1,1,-3,4,-3,0,4,-7,7,-3,-4,11,-14,10,1,-15,25,

%T -24,9,16,-40,49,-33,-7,56,-89,82,-26,-63,145,-171,108,37,-208,316,

%U -279,71,245,-524,595

%N Expansion of (1+x)/(1+x-x^3) in powers of x.

%C Except for signs the sequence is the essentially same as A078013, A050935 and A104769.

%C Padovan sequence extended to negative indices. - _Hugo Pfoertner_, Jul 16 2017

%H G. C. Greubel, <a href="/A176971/b176971.txt">Table of n, a(n) for n = 0..5000</a>

%H YĆ¼ksel Soykan, <a href="https://arxiv.org/abs/1910.03490">Summing Formulas For Generalized Tribonacci Numbers</a>, arXiv:1910.03490 [math.GM], 2019.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Padovan_sequence">Padovan sequence.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,0,1). [From _R. J. Mathar_, Apr 30 2010]

%F a(n) = A000931(n)^2 -A000931(n-1)*A000931(n+1).

%F a(n) = -a(n-1) +a(n-3). - _R. J. Mathar_, Apr 30 2010

%F a(n) = -A104769(n) - A104769(n+1). - _Ralf Stephan_, Aug 18 2013

%F G.f.: 1 / (1 - x^3 / (1 + x)). - _Michael Somos_, Dec 13 2013

%F a(n) = A182097(-n) for all n in Z. - _Michael Somos_, Dec 13 2013

%F A000931(n) = a(n)^2 - a(n-1) * a(n+1). - _Michael Somos_, Dec 13 2013

%F Binomial transform is A005251(n+1). - _Michael Somos_, Dec 13 2013

%e G.f. = 1 + x^3 - x^4 + x^5 - x^7 + 2*x^8 - 2*x^9 + x^10 + x^11 - 3*x^12 + ...

%t a[0] := 1; a[1] = 0; a[2] = 0;

%t a[n_] := a[n] = a[n - 2] + a[n - 3];

%t b = Table[a[n], {n, 0, 50}];

%t Table[b[[n]]^2 - b[[n - 1]]*b[[n + 1]], {n, 1, Length[b] - 1}]

%t a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 + x) / (1 + x - x^3), {x, 0, n}], SeriesCoefficient[ 1 / (1 - x^2 - x^3), {x, 0, Abs@n}]]; (* _Michael Somos_, Dec 13 2013 *)

%o (PARI) {a(n) = if( n>=0, polcoeff( (1 + x) / (1 + x - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^-n), -n))}; /* _Michael Somos_, Dec 13 2013 */

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)/(1+x-x^3))); // _G. C. Greubel_, Sep 25 2018

%Y Cf. A000931, A005251, A050935, A078013, A104769, A182097.

%K sign,easy

%O 0,9

%A _Roger L. Bagula_, Apr 29 2010

%E Deleted certain dangerous or potentially dangerous links. - _N. J. A. Sloane_, Jan 30 2021