login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108299 Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2]. 57
1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Matrix inverse of A124645.

Let L(n,x) = Sum(T(n,k)*x^(n-k): 0<=k<=n) and Pi=3.14...:

L(n,x) = Prod(x - 2*cos((2*k-1)*Pi/(2*n+1)): 1<=k<=n);

Sum(T(n,k): 0<=k<=n) = L(n,1) = A010892(n+1);

Sum(abs(T(n,k)): 0<=k<=n) = A000045(n+2);

abs(T(n,k))=A065941(n,k), T(n,k)=A065941(n,k)*A087960(k);

T(2*n,k) + T(2*n+1,k+1) = 0 for 0<=k<=2*n;

T(n,0)=A000012(n)=1; T(n,1)=-1 for n>0;

T(n,2)=-(n-1) for n>1; T(n,3)=A000027(n)=n for n>2;

T(n,4)=A000217(n-3) for n>3; T(n,5)=-A000217(n-4) for n>4;

T(n,6)=-A000292(n-5) for n>5; T(n,7)=A000292(n-6) for n>6;

T(n,n-3)=A058187(n-3)*(-1)^[n/2] for n>2;

T(n,n-2)=A008805(n-2)*(-1)^[(n+1)/2] for n>1;

T(n,n-1)=A008619(n-1)*(-1)^[n/2] for n>0;

T(n,n) = L(n,0) = (-1)^[(n+1)/2];

L(n,1) = A010892(n+1); L(n,-1) = A061347(n+2);

L(n,2) = 1; L(n,-2) = A005408(n)*(-1)^n;

L(n,3) = A001519(n); L(n,-3) = A002878(n)*(-1)^n;

L(n,4) = A001835(n+1); L(n,-4) = A001834(n)*(-1)^n;

L(n,5) = A004253(n); L(n,-5) = A030221(n)*(-1)^n;

L(n,6) = A001653(n); L(n,-6) = A002315(n)*(-1)^n;

L(n,7) = A049685(n); L(n,-7) = A033890(n)*(-1)^n;

L(n,8) = A070997(n); L(n,-8) = A057080(n)*(-1)^n;

L(n,9) = A070998(n); L(n,-9) = A057081(n)*(-1)^n;

L(n,10) = A072256(n+1); L(n,-10) = A054320(n)*(-1)^n;

L(n,11) = A078922(n+1); L(n,-11) = A097783(n)*(-1)^n;

L(n,12) = A077417(n); L(n,-12) = A077416(n)*(-1)^n;

L(n,13) = A085260(n);

L(n,14) = A001570(n); L(n,-14) = A028230(n)*(-1)^n;

L(n,n) = A108366(n); L(n,-n) = A108367(n).

Row n of the matrix inverse (A124645) has g.f.: x^[n/2]*(1-x)^(n-[n/2]). - Paul D. Hanna, Jun 12 2005

From L. Edson Jeffery, Mar 12 2011: (Start)

Conjecture: Let N=2*n+1, with n>2. Then T(n,k) (0<=k<=n) gives the k-th coefficient in the characteristic function p_N(x)=0, of degree n in x, for the n X n tridiagonal unit-primitive matrix G_N (see [Jeffery]) of the form

G_N=A_{N,1}=

(0 1 0 ... 0)

(1 0 1 0 ... 0)

(0 1 0 1 0 ... 0)

...

(0 ... 0 1 0 1)

(0 ... 0 1 1),

with solutions phi_j=2*cos((2*j-1)*Pi/N), j=1,2,...,n. For example, for n=3,

G_7=A_{7,1}=

(0 1 0)

(1 0 1)

(0 1 1).

We have {T(3,k)}=(1,-1,-2,1), while the characteristic function of G_7 is p(x)=x^3-x^2-2*x+1=0, with solutions phi_j=2*cos((2*j-1)*Pi/7), j=1,2,3. (End)

The triangle sums, see A180662 for their definitions, link A108299 with several sequences, see the crossrefs. - Johannes W. Meijer, Aug 08 2011

The roots to the polynomials are chaotic using iterates of the operation (x^2 - 2), with cycle lengths L and initial seeds returning to the same term or (-1)* the seed. Periodic cycle lengths L are shown in A003558 such that for the polynomial represented by row r, the cycle length L is A003558(r-1). The matrices corresponding to the rows as characteristic polynomials are likewise chaotic [Cf. Kappraff et al., 2005] with the same cycle lengths but substituting 2*I for the "2" in (x^2 - 2), where I = the Identity matrix.  For example, the roots to x^3 - x^2 - 2x + 1 = 0 are 1.801937..., -1.246979..., and 0.445041...With 1.801937...as the initial seed and using (x^2 - 2), we obtain the 3-period trajectory of 8.801937...-> 1.246979...-> -0.445041...(returning to -1.801937...). We note that A003558(2) = 3.  The corresponding matrix M is: [0,1,0; 1,0,1; 0,1,1,]. Using seed M with (x^2 - 2*I), we obtain the 3-period with the cycle completed at (-1)*M. - Gary W. Adamson, Feb 07 2012

REFERENCES

Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005).

Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005).

LINKS

Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened

Henry W. Gould, A Variant of Pascal's Triangle, Corrections, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271.

L. E. Jeffery, Unit-primitive matrices.

Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.

Frank Ruskey and Carla Savage, Gray codes for set partitions and restricted growth tails, Australasian Journal of Combinatorics, Volume 10(1994), pp. 85-96. See Table 1 p. 95.

FORMULA

T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2].

T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0<k<n, T(n, 0) = 1, T(n, n) = (-1)^[(n+1)/2].

G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005

The generating polynomial (in z) of row n>=0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011

From Johannes W. Meijer, Aug 08 2011: (Start)

abs(T(n,k)) = A065941(n,k) = abs(A187660(n,n-k))

T(n,n-k) = A130777(n,k); abs(T(n,n-k)) = A046854(n,k) = abs(A066170(n,k)). (End)

EXAMPLE

Triangle begins:

1 ;

1, -1 ;

1, -1, -1 ;

1, -1, -2, 1 ;

1, -1, -3, 2, 1 ;

1, -1, -4, 3, 3, -1 ;

1, -1, -5, 4, 6, -3, -1 ;

1, -1, -6, 5, 10, -6, -4, 1 ;

1, -1, -7, 6, 15, -10, -10, 4, 1 ;

1, -1, -8, 7, 21, -15, -20, 10, 5, -1 ;

1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1 ;

1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1 ;...

MAPLE

A108299 := proc(n, k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n, k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011

MATHEMATICA

t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)

PROG

(PARI) {T(n, k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)), n, x)+y*O(y^k), k, y)} (Hanna)

(Haskell)

a108299 n k = a108299_tabl !! n !! k

a108299_row n = a108299_tabl !! n

a108299_tabl = [1] : iterate (\row ->

   zipWith (+) (zipWith (*) ([0] ++ row) a033999_list)

               (zipWith (*) (row ++ [0]) a059841_list)) [1, -1]

-- Reinhard Zumkeller, May 06 2012

CROSSREFS

Cf. A049310, A039961, A124645 (matrix inverse).

Triangle sums (see the comments): A193884 (Kn11), A154955 (Kn21), A087960 (Kn22), A000007 (Kn3), A010892 (Fi1), A134668 (Fi2), A078031 (Ca2), A193669 (Gi1), A001519 (Gi3), A193885 (Ze1), A050935 (Ze3). - Johannes W. Meijer, Aug 08 2011

Cf. A003558.

Cf. A033999, A059841.

Sequence in context: A136568 A152157 A039961 * A065941 A123320 A054123

Adjacent sequences:  A108296 A108297 A108298 * A108300 A108301 A108302

KEYWORD

sign,tabl

AUTHOR

Reinhard Zumkeller, Jun 01 2005

EXTENSIONS

Corrected and edited by Philippe Deléham, Oct 20 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 21:56 EST 2020. Contains 338755 sequences. (Running on oeis4.)