The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108299 Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2]. 57
 1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Matrix inverse of A124645. Let L(n,x) = Sum_{k=0..n} T(n,k)*x^(n-k) and Pi=3.14...: L(n,x) = Product_{k=1..n} (x - 2*cos((2*k-1)*Pi/(2*n+1))); Sum_{k=0..n} T(n,k) = L(n,1) = A010892(n+1); Sum_{k=0..n} abs(T(n,k)) = A000045(n+2); abs(T(n,k)) = A065941(n,k), T(n,k) = A065941(n,k)*A087960(k); T(2*n,k) + T(2*n+1,k+1) = 0 for 0 <= k <= 2*n; T(n,0) = A000012(n) = 1; T(n,1) = -1 for n > 0; T(n,2) = -(n-1) for n > 1; T(n,3) = A000027(n)=n for n > 2; T(n,4) = A000217(n-3) for n > 3; T(n,5) = -A000217(n-4) for n > 4; T(n,6) = -A000292(n-5) for n > 5; T(n,7) = A000292(n-6) for n > 6; T(n,n-3) = A058187(n-3)*(-1)^floor(n/2) for n > 2; T(n,n-2) = A008805(n-2)*(-1)^floor((n+1)/2) for n > 1; T(n,n-1) = A008619(n-1)*(-1)^floor(n/2) for n > 0; T(n,n) = L(n,0) = (-1)^floor((n+1)/2); L(n,1) = A010892(n+1); L(n,-1) = A061347(n+2); L(n,2) = 1; L(n,-2) = A005408(n)*(-1)^n; L(n,3) = A001519(n); L(n,-3) = A002878(n)*(-1)^n; L(n,4) = A001835(n+1); L(n,-4) = A001834(n)*(-1)^n; L(n,5) = A004253(n); L(n,-5) = A030221(n)*(-1)^n; L(n,6) = A001653(n); L(n,-6) = A002315(n)*(-1)^n; L(n,7) = A049685(n); L(n,-7) = A033890(n)*(-1)^n; L(n,8) = A070997(n); L(n,-8) = A057080(n)*(-1)^n; L(n,9) = A070998(n); L(n,-9) = A057081(n)*(-1)^n; L(n,10) = A072256(n+1); L(n,-10) = A054320(n)*(-1)^n; L(n,11) = A078922(n+1); L(n,-11) = A097783(n)*(-1)^n; L(n,12) = A077417(n); L(n,-12) = A077416(n)*(-1)^n; L(n,13) = A085260(n); L(n,14) = A001570(n); L(n,-14) = A028230(n)*(-1)^n; L(n,n) = A108366(n); L(n,-n) = A108367(n). Row n of the matrix inverse (A124645) has g.f.: x^floor(n/2)*(1-x)^(n-floor(n/2)). - Paul D. Hanna, Jun 12 2005 From L. Edson Jeffery, Mar 12 2011: (Start) Conjecture: Let N=2*n+1, with n > 2. Then T(n,k) (0 <= k <= n) gives the k-th coefficient in the characteristic function p_N(x)=0, of degree n in x, for the n X n tridiagonal unit-primitive matrix G_N (see [Jeffery]) of the form G_N=A_{N,1}= (0 1 0 ... 0) (1 0 1 0 ... 0) (0 1 0 1 0 ... 0) ... (0 ... 0 1 0 1) (0 ... 0 1 1), with solutions phi_j = 2*cos((2*j-1)*Pi/N), j=1,2,...,n. For example, for n=3, G_7=A_{7,1}= (0 1 0) (1 0 1) (0 1 1). We have {T(3,k)}=(1,-1,-2,1), while the characteristic function of G_7 is p(x) = x^3-x^2-2*x+1 = 0, with solutions phi_j = 2*cos((2*j-1)*Pi/7), j=1,2,3. (End) The triangle sums, see A180662 for their definitions, link A108299 with several sequences, see the crossrefs. - Johannes W. Meijer, Aug 08 2011 The roots to the polynomials are chaotic using iterates of the operation (x^2 - 2), with cycle lengths L and initial seeds returning to the same term or (-1)* the seed. Periodic cycle lengths L are shown in A003558 such that for the polynomial represented by row r, the cycle length L is A003558(r-1). The matrices corresponding to the rows as characteristic polynomials are likewise chaotic [cf. Kappraff et al., 2005] with the same cycle lengths but substituting 2*I for the "2" in (x^2 - 2), where I = the Identity matrix. For example, the roots to x^3 - x^2 - 2x + 1 = 0 are 1.801937..., -1.246979..., and 0.445041... With 1.801937... as the initial seed and using (x^2 - 2), we obtain the 3-period trajectory of 8.801937... -> 1.246979... -> -0.445041... (returning to -1.801937...). We note that A003558(2) = 3. The corresponding matrix M is: [0,1,0; 1,0,1; 0,1,1,]. Using seed M with (x^2 - 2*I), we obtain the 3-period with the cycle completed at (-1)*M. - Gary W. Adamson, Feb 07 2012 REFERENCES Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005). Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005). LINKS Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened Henry W. Gould, A Variant of Pascal's Triangle, Corrections, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271. L. Edson Jeffery, Unit-primitive matrices. Ju, Hyeong-Kwan On the sequence generated by a certain type of matrices. Honam Math. J. 39, No. 4, 665-675 (2017). Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015. Frank Ruskey and Carla Savage, Gray codes for set partitions and restricted growth tails, Australasian Journal of Combinatorics, Volume 10(1994), pp. 85-96. See Table 1 p. 95. FORMULA T(n,k) = binomial(n-floor((k+1)/2),floor(k/2))*(-1)^floor((k+1)/2). T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0 < k < n, T(n, 0) = 1, T(n, n) = (-1)^floor((n+1)/2). G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005 The generating polynomial (in z) of row n >= 0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011 From Johannes W. Meijer, Aug 08 2011: (Start) abs(T(n,k)) = A065941(n,k) = abs(A187660(n,n-k)); T(n,n-k) = A130777(n,k); abs(T(n,n-k)) = A046854(n,k) = abs(A066170(n,k)). (End) EXAMPLE Triangle begins: 1; 1, -1; 1, -1, -1; 1, -1, -2, 1; 1, -1, -3, 2, 1; 1, -1, -4, 3, 3, -1; 1, -1, -5, 4, 6, -3, -1; 1, -1, -6, 5, 10, -6, -4, 1; 1, -1, -7, 6, 15, -10, -10, 4, 1; 1, -1, -8, 7, 21, -15, -20, 10, 5, -1; 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1; 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1; ... MAPLE A108299 := proc(n, k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n, k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011 MATHEMATICA t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *) PROG (PARI) {T(n, k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)), n, x)+y*O(y^k), k, y)} (Hanna) (Haskell) a108299 n k = a108299_tabl !! n !! k a108299_row n = a108299_tabl !! n a108299_tabl = [1] : iterate (\row -> zipWith (+) (zipWith (*) ([0] ++ row) a033999_list) (zipWith (*) (row ++ [0]) a059841_list)) [1, -1] -- Reinhard Zumkeller, May 06 2012 CROSSREFS Cf. A049310, A039961, A124645 (matrix inverse). Triangle sums (see the comments): A193884 (Kn11), A154955 (Kn21), A087960 (Kn22), A000007 (Kn3), A010892 (Fi1), A134668 (Fi2), A078031 (Ca2), A193669 (Gi1), A001519 (Gi3), A193885 (Ze1), A050935 (Ze3). - Johannes W. Meijer, Aug 08 2011 Cf. A003558. Cf. A033999, A059841. Sequence in context: A342477 A152157 A039961 * A065941 A123320 A054123 Adjacent sequences: A108296 A108297 A108298 * A108300 A108301 A108302 KEYWORD sign,tabl AUTHOR Reinhard Zumkeller, Jun 01 2005 EXTENSIONS Corrected and edited by Philippe Deléham, Oct 20 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 03:48 EST 2022. Contains 358672 sequences. (Running on oeis4.)