OFFSET
1,5
COMMENTS
Differs from A039776 at n = 20, 21, ...
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Abhijit A J, A. Satyanarayana Reddy, Number of non-primes in the set of units modulo n, arXiv:1907.09908 [math.GM], 2019.
Abhijit A. J. and A. Satyanarayana Reddy, Number of non-primes in the set of units modulo n, The Mathematics Student, Vol. 88, No. 1-2 (2019), 147-152.
FORMULA
a(n) = A036997(n) + 1. - Peter Luschny, Oct 22 2010
EXAMPLE
At n = 10, we see that the numbers below 10 coprime to 10 are 1, 3, 7, 9. Removing 3 and 7, which are prime, we are left with two numbers, 1 and 9. Hence a(10) = 2.
At n = 100, phi(100) = 40, phi(100) - (pi(100) - A001221(100)) = 17, thus a(100) = 17.
MAPLE
A048864 := n -> nops(select(k->gcd(k, n)=1, remove(isprime, [$1..n]))); # Peter Luschny, Oct 22 2010
MATHEMATICA
Array[EulerPhi@ # - (PrimePi@ # - PrimeNu@ #) &, 82] (* Michael De Vlieger, Jul 03 2016 *)
Table[Length[Select[Range[n], GCD[n, #] == 1 && Not[PrimeQ[#]] &]], {n, 80}] (* Alonso del Arte, Oct 02 2017 *)
PROG
(PARI) a(n) = eulerphi(n) - (primepi(n) - omega(n)); \\ Indranil Ghosh, Apr 27 2017
(Python)
from sympy import totient, primepi, primefactors
def a(n): return totient(n) - (primepi(n) - len(primefactors(n))) # Indranil Ghosh, Apr 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Converted second formula to an equation, added commas to the example - R. J. Mathar, Oct 23 2010
STATUS
approved