

A072022


Smallest x so that the number of nonprimes (i.e. 1 and composites) in the reduced residue set (RSS(n)) of n equals n.


3



1, 5, 7, 15, 26, 11, 13, 38, 102, 17, 19, 25, 0, 23, 35, 144, 74, 198, 29, 31, 75, 57, 104, 94, 37, 55, 69, 41, 43, 118, 0, 47, 81, 128, 87, 134, 53, 93, 480, 146, 77, 59, 61, 117, 111, 166, 172, 67, 250, 91, 71, 73, 350, 194, 129, 202, 79, 206, 212, 83, 214, 153, 218
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..63.


FORMULA

a(n)=Min{x; A048864(x)=n}; a(n)=0 if no such number exists.


EXAMPLE

n = 15: RRS[15] = {1,2,4,7,8,11,13,14} of which nonprimes = cRRS[15] = {1,4,8,14}, i.e. 4 terms; since 15 is smallest such number, so a(4) = 15. a(m) = 0 for m = {13,31,70,119,189,210,235,236}


MATHEMATICA

f[x_] := EulerPhi[x]PrimePi[x]+Length[FactorInteger[x]] t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 3, 1000000}]; t


CROSSREFS

Cf. A048864, A072023.
Sequence in context: A068580 A110994 A015833 * A003429 A076860 A067589
Adjacent sequences: A072019 A072020 A072021 * A072023 A072024 A072025


KEYWORD

nonn


AUTHOR

Labos Elemer, Jun 06 2002


STATUS

approved



