login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046145 Smallest primitive root modulo n, or 0 if no root exists. 16
0, 0, 1, 2, 3, 2, 5, 3, 0, 2, 3, 2, 0, 2, 3, 0, 0, 3, 5, 2, 0, 0, 7, 5, 0, 2, 7, 2, 0, 2, 0, 3, 0, 0, 3, 0, 0, 2, 3, 0, 0, 6, 0, 3, 0, 0, 5, 5, 0, 3, 3, 0, 0, 2, 5, 0, 0, 0, 3, 2, 0, 2, 3, 0, 0, 0, 0, 2, 0, 0, 0, 7, 0, 5, 5, 0, 0, 0, 0, 3, 0, 2, 7, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0, 5, 3, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The value 0 at index 0 says 0 has no primitive roots, but the 0 at index 1 says 1 has a primitive root of 0, the only real 0 in the sequence.

a(n) is nonzero if and only if n is 2, 4, or of the form p^k, or 2*p^k where p is an odd prime and k>0. - Tom Edgar, Jun 02 2014

LINKS

T. D. Noe, Table of n, a(n) for n=0..10000

Eric Weisstein's World of Mathematics, Primitive Root.

MAPLE

A046145 := proc(n)

  if n <=1 then

    0;

  else

    pr := numtheory[primroot](n) ;

    if pr = FAIL then

       return 0 ;

    else

       return pr ;

    end if;

  end if;

end proc:

seq(A046145(n), n=0..110) ;  # R. J. Mathar, Jul 08 2010

MATHEMATICA

smallestPrimitiveRoot[n_ /; n <= 1] = 0; smallestPrimitiveRoot[n_] := Block[{pr = PrimitiveRoot[n], g}, If[! NumericQ[pr], g = 0, g = 1; While[g <= pr, If[ CoprimeQ[g, n] && MultiplicativeOrder[g, n] == EulerPhi[n], Break[]]; g++]]; g]; smallestPrimitiveRoot /@ Range[0, 100] (* Jean-Fran├žois Alcover, Feb 15 2012 *)

PROG

(PARI) for(i=0, 100, p=0; for(q=1, i-1, if(gcd(q, i)==1&&znorder(Mod(q, i))==eulerphi(i), p=q; break)); print1(p", ")) /* V. Raman, Nov 22 2012 */

CROSSREFS

Cf. A001918, A046144, A046146, A002233, A071894, A219027, A008330, A010554.

Sequence in context: A118176 A005731 A132962 * A103309 A174621 A007967

Adjacent sequences:  A046142 A046143 A046144 * A046146 A046147 A046148

KEYWORD

nonn,easy,nice

AUTHOR

Eric W. Weisstein

EXTENSIONS

Initial terms corrected by Harry J. Smith, Jan 27 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 19 12:15 EDT 2014. Contains 246976 sequences.