login
A046146
Largest primitive root modulo n, or 0 if no root exists.
13
0, 0, 1, 2, 3, 3, 5, 5, 0, 5, 7, 8, 0, 11, 5, 0, 0, 14, 11, 15, 0, 0, 19, 21, 0, 23, 19, 23, 0, 27, 0, 24, 0, 0, 31, 0, 0, 35, 33, 0, 0, 35, 0, 34, 0, 0, 43, 45, 0, 47, 47, 0, 0, 51, 47, 0, 0, 0, 55, 56, 0, 59, 55, 0, 0, 0, 0, 63, 0, 0, 0, 69, 0, 68, 69, 0, 0, 0, 0, 77, 0, 77, 75, 80, 0, 0
OFFSET
0,4
COMMENTS
The value 0 at index 0 says 0 has no primitive roots, but the 0 at index 1 says 1 has a primitive root of 0, the only real 0 in the sequence. - Initial terms corrected by Harry J. Smith, Jan 27 2005
a(n) is nonzero if and only if n is 2, 4, or of the form p^k, or 2*p^k where p is an odd prime and k>0. - Tom Edgar, Jun 02 2014
LINKS
Eric Weisstein's World of Mathematics, Primitive Root.
MATHEMATICA
f[n_] := Block[{pr = PrimitiveRootList[n]}, If[pr == {}, 0, pr[[-1]]]]; Array[f, 86, 0] (* Robert G. Wilson v, Nov 03 2014 *)
PROG
(PARI) for(i=0, 100, p=0; for(q=1, i-1, if(gcd(q, i)==1&&znorder(Mod(q, i))==eulerphi(i), p=q)); print1(p", ")) /* V. Raman, Nov 22 2012 */
KEYWORD
nonn
EXTENSIONS
Initial terms corrected by Harry J. Smith, Jan 27 2005
STATUS
approved