login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002233 a(1) = 1; for n > 1, a(n) = least positive prime primitive root of n-th prime.
(Formerly M0243 N0084)
11
1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 11, 3, 3, 2, 3, 2, 2, 7, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 7, 3, 7, 7, 11, 3, 5, 2, 43, 5, 3, 3, 2, 5, 17, 17, 2, 3, 19, 2, 2, 3, 7, 11, 2, 2, 5, 2, 5, 3, 29, 2, 2, 7, 5, 17, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
According to Section F9 in Guy's book "Unsolved Problems in Number Theory" (Springer, 2004), P. Erdős asked whether for any large prime p there is a prime q < p so that q is a primitive root modulo p. See also the comments on A223942 related to this sequence. - Zhi-Wei Sun, Mar 29 2013
For n >= 2 the Dirichlet characters modulo prime(n), {Chi_{prime n}{(r,m)}, for n >= 1, r=1..(prime(n)-1) and m = 2..prime(n)-1, are determined from those for m = a(n), i.e., Chi_{prime n}(r,a(n)) = exp(2*Pi*I*(r-1)/(prime(n)-1)) and the power sequence S(n) := {a(n)^k (mod prime(n)), k = 1..(prime(n)-2)} by the strong multiplicity of Chi as Chi_{prime n}(r,m) = (Chi_{prime n}(r,a(n)))^{pos(m,S(n))} where S(n)_{pos(m,S(n))} = m. For m=1 Chi is always 1. For m = prime(n) Chi is always 0. For n=1 (prime 2) the characters are 1, 0 for r = 1 and m = 1, 2, respectively. See the example for a(4) below. - Wolfdieter Lang, Jan 19 2017
REFERENCES
T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976, 1986, p. 139.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. 2.
LINKS
A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
FORMULA
a(n) = A122028(n) for n>1. - Jonathan Sondow, May 18 2017
EXAMPLE
n=4, a(4) = 3: Dirichlet characters for prime(4) = 7 from Chi_7(r,3) = exp(Pi*I*(r-1)/3) and the power sequence S(4) = [3, 2, 6, 4, 5]. Hence Chi_7(r,2) = Chi_7(r,3)^2 = exp(2*Pi*I*(r-1)/3), Chi_7(r,4) = Chi_7(r,3)^4, Chi_7(r,5) = Chi_7(r,3)^5, Chi_7(r,6) = Chi_7(r,3)^3. Chi_7(r,1) = 1 and Chi_7(r,7) = 0, for r=1..6. This produces the character modulo 7 table. See the Apostol reference, p. 139, with interchanged rows r = 2..6. - Wolfdieter Lang, Jan 19 2017
MATHEMATICA
a[1] = 1; a[n_] := (p = Prime[n]; Select[Range[p], PrimeQ[#] && MultiplicativeOrder[#, p] == EulerPhi[p] &, 1]) // First; Table[a[n], {n, 100}] (* Jean-François Alcover, Mar 30 2011 *)
a[1] = 1; a[n_] := SelectFirst[PrimitiveRootList[Prime[n]], PrimeQ]; Array[a, 101] (* Jean-François Alcover, Sep 28 2016 *)
PROG
(PARI) leastroot(p)=forprime(q=2, p, if(znorder(Mod(q, p))+1==p, return(q)))
a(n)=if(n>1, leastroot(prime(n)), 1) \\ Charles R Greathouse IV, Mar 20 2013
CROSSREFS
See A122028 (least primitive root that is prime), A001918 (least positive primitive root), A223942.
Sequence in context: A001918 A268616 A331506 * A241516 A273458 A159953
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 12:15 EDT 2024. Contains 371969 sequences. (Running on oeis4.)