

A002230


Primes with record values of the least positive primitive root.
(Formerly M0855 N0325)


5



2, 3, 7, 23, 41, 71, 191, 409, 2161, 5881, 36721, 55441, 71761, 110881, 760321, 5109721, 17551561, 29418841, 33358081, 45024841, 90441961, 184254841, 324013369, 831143041, 1685283601, 6064561441, 7111268641, 9470788801, 28725635761, 108709927561, 386681163961, 1990614824641, 44384069747161, 89637484042681
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.


LINKS

Table of n, a(n) for n=1..34.
Stephen D. Cohen, Tomás Oliveira e Silva, Tim Trudgian, On Grosswald's conjecture on primitive roots, arXiv:1503.04519 [math.NT], 2015.
R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
Tomás Oliveira e Silva, Least prime primitive root of prime numbers
A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
Index entries for primes by primitive root


MATHEMATICA

s = {2}; rm = 1; Do[p = Prime[k]; r = PrimitiveRoot[p]; If[r > rm, Print[p]; AppendTo[s, p]; rm = r], {k, 10^6}]; s (* JeanFrançois Alcover, Apr 05 2011 *)


CROSSREFS

Cf. A002229 (for the primitive roots in question).
Records in A023048, indices in A114885.
Sequence in context: A214704 A231075 A072686 * A106865 A267504 A000057
Adjacent sequences: A002227 A002228 A002229 * A002231 A002232 A002233


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)


STATUS

approved



