login
A241516
Least positive primitive root g < prime(n) modulo prime(n) which is also a partition number given by A000041, or 0 if such a number g does not exist.
6
1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 11, 3, 3, 2, 3, 2, 2, 7, 5, 2, 5, 2, 2, 2, 22, 5, 2, 3, 2, 3, 2, 7, 3, 7, 7, 11, 3, 5, 2, 15, 5, 3, 3, 2, 5, 22, 15, 2, 3, 15, 2, 2, 3, 7, 11, 2, 2, 5, 2, 5, 3, 22
OFFSET
1,2
COMMENTS
According to the conjecture in A241504, a(n) should be always positive.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(4) = 3 since 3 = A000041(3) is a primitive root modulo prime(4) = 7, but neither 1 = A000041(1) nor 2 = A000041(2) is.
MATHEMATICA
f[k_]:=PartitionsP[k]
dv[n_]:=Divisors[n]
Do[Do[If[f[k]>Prime[n]-1, Goto[cc]]; Do[If[Mod[f[k]^(Part[dv[Prime[n]-1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}]; Print[n, " ", PartitionsP[k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Prime[n]-1}]; Label[cc]; Print[Prime[n], " ", 0]; Label[bb]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 24 2014
STATUS
approved