

A268616


Least squarefree primitive root of the nth prime.


1



1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2, 2, 2, 2, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Joerg Arndt, Table of n, a(n) for n = 1..10000
Stephen D. Cohen, Tim Trudgian, On the least squarefree primitive root modulo p, arXiv:1602.02440 [math.NT], (7February2016)


MATHEMATICA

Reap[For[p = 2, p<10^3, p = NextPrime[p], s = Select[PrimitiveRootList[p], SquareFreeQ]; Sow[If[s == {}, 0, First[s]]]]][[2, 1]] (* JeanFrançois Alcover, Sep 03 2016 *)


PROG

(PARI) forprime(p=2, 10^3, for(g=1, p1, if(issquarefree(g)&&znorder(Mod(g, p))==p1, print1(g, ", "); break)));


CROSSREFS

Cf. A001918.
Sequence in context: A127809 A127810 A001918 * A002233 A241516 A273458
Adjacent sequences: A268613 A268614 A268615 * A268617 A268618 A268619


KEYWORD

nonn


AUTHOR

Joerg Arndt, Feb 09 2016


STATUS

approved



