login
A268616
Least squarefree primitive root of the n-th prime.
1
1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2, 2, 2, 2, 3, 3
OFFSET
1,2
LINKS
Stephen D. Cohen, Tim Trudgian, On the least square-free primitive root modulo p, arXiv:1602.02440 [math.NT], (7-February-2016)
MATHEMATICA
Reap[For[p = 2, p<10^3, p = NextPrime[p], s = Select[PrimitiveRootList[p], SquareFreeQ]; Sow[If[s == {}, 0, First[s]]]]][[2, 1]] (* Jean-François Alcover, Sep 03 2016 *)
PROG
(PARI) forprime(p=2, 10^3, for(g=1, p-1, if(issquarefree(g)&&znorder(Mod(g, p))==p-1, print1(g, ", "); break)));
CROSSREFS
Cf. A001918.
Sequence in context: A127809 A127810 A001918 * A331506 A002233 A241516
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 09 2016
STATUS
approved