

A010554


a(n) = phi(phi(n)), where phi is the Euler totient function.


33



1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, 2, 6, 4, 4, 4, 10, 4, 8, 4, 6, 4, 12, 4, 8, 8, 8, 8, 8, 4, 12, 6, 8, 8, 16, 4, 12, 8, 8, 10, 22, 8, 12, 8, 16, 8, 24, 6, 16, 8, 12, 12, 28, 8, 16, 8, 12, 16, 16, 8, 20, 16, 20, 8, 24, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

If n has a primitive root, then it has exactly phi(phi(n)) of them (Burton 1989, p. 188), which means that if p is a prime number, then there are exactly phi(p1) incongruent primitive roots of p (Burton 1989).  Jonathan Vos Post, Sep 10 2010
See A046144 for the number of primitive roots mod n.  Wolfdieter Lang, Mar 09 2012


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
Burton, D. M. "The Order of an Integer Modulo n," "Primitive Roots for Primes," and "Composite Numbers Having Primitive Roots." Sections 8.18.3 in Elementary Number Theory, 4th ed. Dubuque, IA: William C. Brown Publishers, pp. 184205, 1989.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165204.
Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165204. [Annotated copy with Anumbers]
S. R. Finch, Idempotents and Nilpotents Modulo n (arXiv:math.NT/0605019)
Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Primitive Root.


MAPLE

with(numtheory): f := n>phi(phi(n));


MATHEMATICA

Table[EulerPhi[EulerPhi[n]], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)


PROG

(Haskell)
a010554 = a000010 . a000010  Reinhard Zumkeller, Dec 26 2012
(PARI) a(n)=eulerphi(eulerphi(n)) \\ Charles R Greathouse IV, Feb 06 2017
(MAGMA) [EulerPhi(EulerPhi(n)): n in [1..100]]; // Vincenzo Librandi, Feb 24 2018


CROSSREFS

Cf. A000010, A049099, A049100, A049107, A077197.
Sequence in context: A117173 A241061 A103858 * A062610 A025801 A060548
Adjacent sequences: A010551 A010552 A010553 * A010555 A010556 A010557


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane


STATUS

approved



