login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008330
phi(p-1), as p runs through the primes.
43
1, 1, 2, 2, 4, 4, 8, 6, 10, 12, 8, 12, 16, 12, 22, 24, 28, 16, 20, 24, 24, 24, 40, 40, 32, 40, 32, 52, 36, 48, 36, 48, 64, 44, 72, 40, 48, 54, 82, 84, 88, 48, 72, 64, 84, 60, 48, 72, 112, 72, 112, 96, 64, 100, 128, 130, 132, 72, 88, 96, 92, 144, 96, 120, 96, 156, 80, 96, 172, 112
OFFSET
1,3
COMMENTS
Number of primitive roots in the field with p elements.
Kátai proves that phi(p-1)/(p-1) has a continuous distribution function. - Charles R Greathouse IV, Jul 15 2013
For odd primes p, phi(p-1)<=(p-1)/2 since p has phi(p-1) primitive roots and (p-1)/2 quadratic residues and no primitive root is a quadratic residue. - Geoffrey Critzer, Apr 18 2015
LINKS
P. Erdős, On the density of some sequences of numbers, III., J. London Math. Soc. 13 (1938), pp. 119-127.
Imre Kátai, On distribution of arithmetical functions on the set prime plus one, Compositio Math. 19 (1968), pp. 278-289.
I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Mathematische Zeitschrift 28:1 (1928), pp. 171-199.
FORMULA
a(n) = phi(phi(prime(n))). - Robert G. Wilson v, Dec 26 2015
a(n) = phi(A006093(n)). - Michel Marcus, Dec 27 2015
MAPLE
A008330 := proc(n)
numtheory[phi](ithprime(n)-1) ;
end proc:
seq(A008330(n), n=1..100) ;
MATHEMATICA
Table[ EulerPhi[ Prime@n - 1], {n, 70}] (* Robert G. Wilson v, Dec 17 2005 *)
PROG
(PARI) a(n)=eulerphi(prime(n)-1) \\ Charles R Greathouse IV, Dec 08 2011
(Magma) [EulerPhi(NthPrime(n)-1): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
CROSSREFS
Cf. A000010, A241194, A241195 (fraction phi(p-1)/(p-1)), A338364 (partial products).
Sequence in context: A336125 A353125 A330807 * A191234 A225373 A138219
KEYWORD
nonn,look
STATUS
approved