login
A032437
Substrings from the right are prime numbers (using only odd digits different from 5).
12
3, 7, 13, 17, 37, 73, 97, 113, 137, 173, 197, 313, 317, 337, 373, 397, 773, 797, 937, 997, 1373, 1997, 3137, 3313, 3373, 3797, 7937, 9137, 9173, 9337, 9397, 13313, 33797, 39397, 79337, 79397, 91373, 91997, 99137, 99173, 99397, 139397, 379397
OFFSET
1,1
COMMENTS
Primes p with decimal expansion d_1 d_2 d_3 ... d_k such that the digits d_i are 1, 3, 7, or 9, and deleting 1, 2, 3, up to k-1 leading digits also produces a prime. For example, 9173 is a term because all of 9173, 173, 73, and 3 are primes. - N. J. A. Sloane, Jun 28 2022
LINKS
T. D. Noe, Table of n, a(n) for n = 1..58 [The complete list of terms]
C. Rivera, Prime strings
Eric Weisstein's World of Mathematics, Truncatable Prime.
EXAMPLE
173 is a term because 173, 73, and 3 are all primes. 371 is not a term because 371 and 1 are not primes. - N. J. A. Sloane, Jun 28 2022
MATHEMATICA
Select[Prime[Range[33000]], SubsetQ[{1, 3, 7, 9}, IntegerDigits[#]]&&AllTrue[Mod[#, 10^Range[ IntegerLength[ #]-1]], PrimeQ]&] (* Harvey P. Dale, Jun 28 2022 *)
PROG
(PARI) is(n)=my(d=digits(n)); for(i=1, n, if(!isprime(fromdigits(d[i..n])), return(0))); 1 \\ Charles R Greathouse IV, Jun 25 2017
KEYWORD
nonn,fini,full,base,nice,changed
AUTHOR
EXTENSIONS
Single-digit terms added by Eric W. Weisstein.
STATUS
approved