OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..1198
Index entries for linear recurrences with constant coefficients, signature (11,-17,-124,276,396,-902,-462,946,220,-340,-44,39,3,-1).
FORMULA
G.f.: ( 1- 9*x -3*x^2 +140*x^3 -30*x^4 -689*x^5 +12*x^6 +1189*x^7 +129*x^8 -572*x^9 -46*x^10 +77*x^11 +5*x^12 -2*x^13 ) / ( (x-1) *(1+x) *(x^2+4*x-1) *(x^2-7*x+1) *(x^2+3*x+1) *(x^2-x-1) *(x^2-3*x+1) *(x^2+x-1) ). - Robert Israel, Mar 06 2019
MAPLE
ff:= unapply(expand(add(binomial(x, i), i=0..4)), x):
seq(ff(combinat:-fibonacci(n)), n=0..50); # Robert Israel, Mar 06 2019
MATHEMATICA
LinearRecurrence[{11, -17, -124, 276, 396, -902, -462, 946, 220, -340, -44, 39, 3, -1}, {1, 2, 2, 4, 8, 31, 163, 1093, 7547, 52956, 368831, 2559196, 17676661, 121774888}, 50] (* Georg Fischer May 09 2020 *)
PROG
(PARI) a(n) = my(fn=fibonacci(n)); sum(i=0, 4, binomial(fn, i)); \\ Michel Marcus, May 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved