login
Substrings from the right are prime numbers (using only odd digits different from 5).
12

%I #33 Feb 16 2025 08:32:36

%S 3,7,13,17,37,73,97,113,137,173,197,313,317,337,373,397,773,797,937,

%T 997,1373,1997,3137,3313,3373,3797,7937,9137,9173,9337,9397,13313,

%U 33797,39397,79337,79397,91373,91997,99137,99173,99397,139397,379397

%N Substrings from the right are prime numbers (using only odd digits different from 5).

%C Primes p with decimal expansion d_1 d_2 d_3 ... d_k such that the digits d_i are 1, 3, 7, or 9, and deleting 1, 2, 3, up to k-1 leading digits also produces a prime. For example, 9173 is a term because all of 9173, 173, 73, and 3 are primes. - _N. J. A. Sloane_, Jun 28 2022

%H T. D. Noe, <a href="/A032437/b032437.txt">Table of n, a(n) for n = 1..58</a> [The complete list of terms]

%H C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_002.htm">Prime strings</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatablePrime.html">Truncatable Prime.</a>

%e 173 is a term because 173, 73, and 3 are all primes. 371 is not a term because 371 and 1 are not primes. - _N. J. A. Sloane_, Jun 28 2022

%t Select[Prime[Range[33000]],SubsetQ[{1,3,7,9},IntegerDigits[#]]&&AllTrue[Mod[#,10^Range[ IntegerLength[ #]-1]],PrimeQ]&] (* _Harvey P. Dale_, Jun 28 2022 *)

%o (PARI) is(n)=my(d=digits(n)); for(i=1,n, if(!isprime(fromdigits(d[i..n])), return(0))); 1 \\ _Charles R Greathouse IV_, Jun 25 2017

%Y Cf. A033664, A024785, A020994, A024770, A052023, A052024, A052025, A050986, A050987.

%K nonn,fini,full,base,nice,changed

%O 1,1

%A _Carlos Rivera_

%E Single-digit terms added by _Eric W. Weisstein_.