login
A020994
Primes that are both left-truncatable and right-truncatable.
18
2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397
OFFSET
1,1
COMMENTS
Two-sided primes: deleting any number of digits at left or at right, but not both, leaves a prime.
Primes in which every digit string containing the most significant digit or the least significant digit is prime. - Amarnath Murthy, Sep 24 2003
Intersection of A024785 and A024770. - Robert Israel, Mar 23 2015
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 178 (Rev. ed. 1997).
MATHEMATICA
tspQ[n_] := Module[{idn=IntegerDigits[n], l}, l=Length[idn]; Union[PrimeQ/@(FromDigits/@ Join[Table[Take[idn, i], {i, l}], Table[Take[idn, -i], {i, l}]])]=={True}] Select[Prime[Range[PrimePi[740000]]], tspQ]
KEYWORD
nonn,fini,full,base
AUTHOR
Mario Velucchi (mathchess(AT)velucchi.it)
EXTENSIONS
Corrected by David W. Wilson
Additional comments from Harvey P. Dale, Jul 10 2002
STATUS
approved