

A020995


Numbers n such that the sum of the digits of Fibonacci(n) is n.


6



0, 1, 5, 10, 31, 35, 62, 72, 175, 180, 216, 251, 252, 360, 494, 504, 540, 946, 1188, 2222
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Since the number of digits in the nth Fibonacci number ~ n*log_10(Golden Ratio), theoretically this sequence is infinite, but then the average density of those digits = ~ 0.208987.  Robert G. Wilson v
Robert Dawson of Saint Mary's University says it is likely that 2222 is the last term, as (assuming that the digits are equally distributed) the expected digit sum is ~ 0.9*n.  Stefan Steinerberger, Mar 12 2006
Bankoff's short paper lists the first seven terms.  T. D. Noe, Mar 19 2012
No more terms < 150000.  Manfred Scheucher, Aug 03 2015


REFERENCES

Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 209.


LINKS

Table of n, a(n) for n=1..20.
Leon Bankoff, A Fibonacci Curiosity, Fibonacci Quarterly 14, Feb. 1976, p. 17.
Pat Ballew, Fibonacci Digit Sums, Pat's Blog, Sunday, 5 August 2012.
Ron Knott, The Mathematical Magic of the Fibonacci Numbers: Digit Sums
Manfred Scheucher, Sage Script
David Terr, On the Sums of Digits of Fibonacci Numbers, Fibonacci Quarterly 34, Aug. 1996, pp. 349355.


EXAMPLE

Fibonacci(10) = 55 and 5+5 = 10.


MATHEMATICA

Do[ If[ Apply[ Plus, IntegerDigits[ Fibonacci[n]]] == n, Print[n]], {n, 1, 10^5} ] (* Sven Simon *)
Do[ If[ Mod[ Fibonacci[n], 9] == Mod[n, 9], If[ Plus @@ IntegerDigits[ Fibonacci[n]] == n, Print[n]]], {n, 0, 10^6}] (* Robert G. Wilson v *)
Select[Range[0, 10^5], Plus @@ IntegerDigits[Fibonacci[ # ]] == # &] (* Ron Knott, Oct 30 2010 *)


PROG

(PARI) isok(n) = sumdigits(fibonacci(n)) == n; \\ Michel Marcus, Feb 18 2015


CROSSREFS

Cf. A000045, A067515, A004090.
Sequence in context: A056422 A032296 A052648 * A174467 A005201 A221304
Adjacent sequences: A020992 A020993 A020994 * A020996 A020997 A020998


KEYWORD

nonn,base,more


AUTHOR

Sven Simon


STATUS

approved



