

A254751


Numbers such that, in base 10, all their proper prefixes and suffixes represent primes.


7



22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 237, 297, 313, 317, 373, 537, 597, 713, 717, 737, 797, 2337, 2397, 2937, 3113, 3137, 3173, 3797, 5937, 5997, 7197, 7337, 7397, 29397, 31373, 37937, 59397, 73313, 739397
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A proper prefix (or suffix) of a number m is one which is neither void, nor identical to m.
Alternative definition: Slicing the decimal expansion of a(n) in any way into two nonempty parts, each part represents a prime number.
Every proper prefix of each member a(n) is a member of A024770, and every proper suffix is a member of A024785. Since these are finite sequences, a(n) is also finite. It has 45 members, the largest of which is 739397 and happens to be a prime.
The sequence is a union of A254753 and A020994.
A subsequence of A260181.  M. F. Hasler, Sep 16 2016


LINKS

Table of n, a(n) for n=1..45.


EXAMPLE

6 is not a member because its expansion cannot be sliced in two.
597 is a member because (5,97,59, and 7) are all primes.
2331 is excluded because 233 is prime, but 1 is not.  Gordon Hamilton, Feb 20 2015


MATHEMATICA

fQ[n_] := (p = {2, 3, 5, 7}; If[ Union@ Join[p, {Mod[n, 10]}] != p, {False}, Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, Union@ PrimeQ@ Flatten@ Table[{FromDigits[ Take[idn, i]], FromDigits[ Take[idn, lng + i  1]]}, {i, lng}] == {True}]]); Select[ Range@1000000, fQ] (* Robert G. Wilson v, Feb 21 2015 *)


PROG

(PARI) slicesIntoPrimes(n, b=10) = {my(k=b); if(n<b, return(0); ); while(n\k>0, if(!isprime(n\k)!isprime(n%k), return(0); ); k*=b; ); return(1); }
(Sage) def breakIntoPrimes(n):
....D=n.digits()
....for i in [1..len(D)1]:
........if not(is_prime(sum(D[i:][j]*10^j for j in range(len(D[i:])))) and is_prime(sum(D[:i][j]*10^j for j in range(len(D[:i]))))):
............return false
........else:
............continue
....return true R=[n for n in [10..1000000] if breakIntoPrimes(n)] # Tom Edgar, Feb 20 2015


CROSSREFS

Cf. A020994, A024770, A024785, A254750, A254752, A254753, A254754, A254756.
Cf. A260181.
Sequence in context: A106582 A092619 A092624 * A260993 A276182 A091404
Adjacent sequences: A254748 A254749 A254750 * A254752 A254753 A254754


KEYWORD

nonn,base,fini,full


AUTHOR

Stanislav Sykora, Feb 15 2015


STATUS

approved



