login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031138 1^5+2^5+...+n^5 is a square. 10
1, 13, 133, 1321, 13081, 129493, 1281853, 12689041, 125608561, 1243396573, 12308357173, 121840175161, 1206093394441, 11939093769253, 118184844298093, 1169909349211681, 11580908647818721, 114639177128975533, 1134810862641936613, 11233469449290390601 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A004291 or convolution of A040000 with A054320. - R. J. Mathar, Oct 26 2009

This is a 6th-degree Diophantine equation 12*m^2=n^2*(n+1)^2*(2*n^2+2*n-1) which reduces to the generalized Pell equation 6*q^2=(2*n+1)^2-3 where q=3*m/(n*(n+1)), so there is no surprise that the solutions satisfy a linear recurrent equation. Charles R Greathouse IV, Max Alekseyev, Oct 22 2012

Also n such that n^2 + (n+1)^2 is equal to the sum of three consecutive squares, for example 13^2+14^2 = 10^2+11^2+12^2. - Colin Barker, Sep 06 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Hex Number

Index entries for linear recurrences with constant coefficients, signature (11, -11, 1).

FORMULA

a(n) = 11*(a(n-1)-a(n-2)) + a(n-3); a(n) = -1/2+((3-sqrt(6))/4) *(5+2sqrt(6))^n +((3+sqrt(6))/4)*(5-2sqrt(6))^n.

a(n)^2+(a(n)+1)^2 = (b(n)-1)^2+b(n)^2+(b(n)+1)^2 = c(n) = 3d(n)+2; where b(n) is A054320, c(n) is A007667 and d(n) is A006061.

a(n) = 10*a(n-1) - a(n-2) + 4; a(0) = a(1) = 1. Also sum of first a(n) fifth powers is a square m^2, where m has factors A000217{a(n)} and A054320(n). - Lekraj Beedassy, Jul 08 2002

contfrac(sqrt(6)/A054320(n))[4]/2 - Thomas Baruchel, Dec 02 2003

G.f.: x*(1+x)^2/((1-x)*(x^2-10*x+1)). - R. J. Mathar, Oct 26 2009

EXAMPLE

a(2) = 13 because 1^5+2^5+...13^5 = 1001^2; a(1) = 1 because 1^5 = 1^2.

MATHEMATICA

LinearRecurrence[{11, -11, 1}, {1, 13, 133}, 20 ] (* Harvey P. Dale, Oct 23 2012 *)

PROG

(PARI) isok(n) = issquare(sum(i=1, n, i^5)); \\ Michel Marcus, Dec 28 2013

(PARI) Vec(x*(1+x)^2/((1-x)*(x^2-10*x+1)) + O(x^40)) \\ Colin Barker, Sep 06 2015

CROSSREFS

Cf. A000539, A006061, A054320, A007667.

Sequence in context: A081042 A016153 A187732 * A097166 A073556 A154999

Adjacent sequences:  A031135 A031136 A031137 * A031139 A031140 A031141

KEYWORD

easy,nonn

AUTHOR

Ignacio Larrosa CaƱestro, entry revised Feb 27 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 00:24 EST 2016. Contains 278993 sequences.