login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187732 Expansion of x/(x^4 - 13x^3 + 36x^2 - 13x + 1). 2
0, 1, 13, 133, 1274, 11942, 111098, 1030791, 9554727, 88535307, 820278004, 7599523660, 70405203700, 652259875085, 6042764572481, 55982252063633, 518638725390318, 4804846035350514, 44513730857759982, 412390365056271763, 3820524794586339931, 35394642842712164887, 327908025365023678952 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This g.f. arose in a discussion with R. K. Guy about divisibility sequences.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (13,-36,13,-1).

FORMULA

a(0)=0, a(1)=1, a(2)=13, a(3)=133, a(n)=13*a(n-1)-36*a(n-2)+ 13*a(n-3)- a(n-4). - Harvey P. Dale, Mar 10 2015

MATHEMATICA

CoefficientList[Series[x / (x^4 - 13 x^3 + 36 x^2 - 13 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)

LinearRecurrence[{13, -36, 13, -1}, {0, 1, 13, 133}, 30] (* Harvey P. Dale, Mar 10 2015 *)

PROG

(Maxima) makelist(coeff(taylor(x/(x^4-13*x^3+36*x^2-13*x+1), x, 0, n), x, n), n, 0, 22);  /* Bruno Berselli, Jun 05 2011 */

(PARI) a=[0, 1, 13, 133]; for(i=1, 99, a=concat(a, 13*a[#a]-36*a[#a-1]+13*a[#a-2]-a[#a-3])); a \\ Charles R Greathouse IV, Jun 05 2011

CROSSREFS

Sequence in context: A198664 A081042 A016153 * A031138 A097166 A073556

Adjacent sequences:  A187729 A187730 A187731 * A187733 A187734 A187735

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 12:49 EST 2018. Contains 318086 sequences. (Running on oeis4.)