OFFSET
0,2
COMMENTS
Compare g.f. to the identity (cf. A001710):
Sum_{n>=0} n^n * x^n / (1 + n*x)^n = 1 + Sum_{n>=1} (n+1)!/2 * x^n.
More generally,
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.
FORMULA
a(n) = (n+2) * 2^(n-1) * n!.
E.g.f.: (1-x)/(1-2*x)^2.
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=0} 1/a(n) = 8 - 4*sqrt(e).
Sum_{n>=0} (-1)^n/a(n) = 8 - 12/sqrt(e). (End)
EXAMPLE
G.f.: A(x) = 1 + 3*x + 16*x^2 + 120*x^3 + 1152*x^4 + 13440*x^5 +...
where
A(x) = 1 + 3*x/(1+3*x) + 5^2*x^2/(1+5*x)^2 + 7^3*x^3/(1+7*x)^3 + 9^4*x^4/(1+9*x)^4 + 11^5*x^5/(1+11*x)^5 +...
MATHEMATICA
a[n_] := (n + 2)*2^(n - 1)*n!; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, ((2*m+1)*x)^m / (1 + (2*m+1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = (n+2)*2^(n-1)*n!}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 02 2013
STATUS
approved