login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027960 'Lucas array': triangular array T read by rows. 33
1, 1, 3, 1, 1, 3, 4, 4, 1, 1, 3, 4, 7, 8, 5, 1, 1, 3, 4, 7, 11, 15, 13, 6, 1, 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1, 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1, 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1, 1, 3, 4, 7, 11, 18, 29, 47, 76, 120, 171 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The k-th row contains 2k+1 numbers.

Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.

T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1<=i<=n, s(i)=s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0<=s(i)<=2i-2.

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 0..10000

FORMULA

T(n, k) = Lucas(k+1) for k<=n, otherwise the (2n-k)th coefficient of the power series for (1+2x)/{(1-x-x^2)(1-x)^(k-n)}.

Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k)=T(n-1, k-2)+T(n-1, k-1) for k=2, 3, ..., 2n-1.

EXAMPLE

....................1

..................1,3,1

................1,3,4,4,1

..............1,3,4,7,8,5,1

...........1,3,4,7,11,15,13,6,1

........1,3,4,7,11,18,26,28,19,7,1

.....1,3,4,7,11,18,29,44,54,47,26,8,1

..1,3,4,7,11,18,29,47,73,98,101,73,34,9,1

MAPLE

T:=proc(n, k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1, k-2) + T(n-1, k-1):fi:end:

for n from 0 to 6 do for k from 0 to 2*n do print(T(n, k)); od:od: # Nathaniel Johnston, Apr 18 2011

MATHEMATICA

t[_, 0] = 1; t[_, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-Fran├žois Alcover, Dec 27 2013 *)

PROG

(PARI) T(r, n)=if(r<0||n>2*r, return(0)); if(n==0||n==2*r, return(1)); if(n==1, 3, T(r-1, n-1)+T(r-1, n-2)) /* Ralf Stephan, May 04 2005 */

CROSSREFS

Central column is the Lucas numbers without initial 2, cf. A000204. Row sums are A036563. Columns in the right half include A027961, A027962, A027963, A027964, A053298. Bisection triangles are in A026998 and A027011.

Sequence in context: A206496 A097560 A218905 * A247282 A246685 A218618

Adjacent sequences:  A027957 A027958 A027959 * A027961 A027962 A027963

KEYWORD

nonn,easy,tabf

AUTHOR

Clark Kimberling

EXTENSIONS

Edited by Ralf Stephan, May 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 06:32 EDT 2017. Contains 290824 sequences.