login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027960 'Lucas array': triangular array T read by rows. 33
1, 1, 3, 1, 1, 3, 4, 4, 1, 1, 3, 4, 7, 8, 5, 1, 1, 3, 4, 7, 11, 15, 13, 6, 1, 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1, 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1, 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1, 1, 3, 4, 7, 11, 18, 29, 47, 76, 120, 171 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The k-th row contains 2k+1 numbers.

Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.

T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1<=i<=n, s(i)=s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0<=s(i)<=2i-2.

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 0..10000

FORMULA

T(n, k) = Lucas(k+1) for k<=n, otherwise the (2n-k)th coefficient of the power series for (1+2x)/{(1-x-x^2)(1-x)^(k-n)}.

Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k)=T(n-1, k-2)+T(n-1, k-1) for k=2, 3, ..., 2n-1.

EXAMPLE

....................1

..................1,3,1

................1,3,4,4,1

..............1,3,4,7,8,5,1

...........1,3,4,7,11,15,13,6,1

........1,3,4,7,11,18,26,28,19,7,1

.....1,3,4,7,11,18,29,44,54,47,26,8,1

..1,3,4,7,11,18,29,47,73,98,101,73,34,9,1

MAPLE

T:=proc(n, k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1, k-2) + T(n-1, k-1):fi:end:

for n from 0 to 6 do for k from 0 to 2*n do print(T(n, k)); od:od: # Nathaniel Johnston, Apr 18 2011

MATHEMATICA

t[_, 0] = 1; t[_, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-Fran├žois Alcover, Dec 27 2013 *)

PROG

(PARI) T(r, n)=if(r<0||n>2*r, return(0)); if(n==0||n==2*r, return(1)); if(n==1, 3, T(r-1, n-1)+T(r-1, n-2)) /* Ralf Stephan, May 04 2005 */

CROSSREFS

Central column is the Lucas numbers without initial 2, cf. A000204. Row sums are A036563. Columns in the right half include A027961, A027962, A027963, A027964, A053298. Bisection triangles are in A026998 and A027011.

Sequence in context: A206496 A097560 A218905 * A319182 A247282 A246685

Adjacent sequences:  A027957 A027958 A027959 * A027961 A027962 A027963

KEYWORD

nonn,easy,tabf

AUTHOR

Clark Kimberling

EXTENSIONS

Edited by Ralf Stephan, May 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 14:26 EST 2018. Contains 318229 sequences. (Running on oeis4.)