login
A027960
'Lucas array': triangular array T read by rows.
33
1, 1, 3, 1, 1, 3, 4, 4, 1, 1, 3, 4, 7, 8, 5, 1, 1, 3, 4, 7, 11, 15, 13, 6, 1, 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1, 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1, 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1, 1, 3, 4, 7, 11, 18, 29, 47, 76, 120, 171, 199, 174, 107, 43, 10, 1
OFFSET
0,3
COMMENTS
The k-th row contains 2k+1 numbers.
Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.
T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1 <= i <= n, s(i) = s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0 <= s(i) <= 2i-2.
LINKS
FORMULA
T(n, k) = Lucas(k+1) for k <= n, otherwise the (2n-k)th coefficient of the power series for (1+2*x)/{(1-x-x^2)*(1-x)^(k-n)}.
Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k) = T(n-1, k-2) + T(n-1, k-1) for 2 <= k <= 2*n-1.
EXAMPLE
1
1, 3, 1
1, 3, 4, 4, 1
1, 3, 4, 7, 8, 5, 1
1, 3, 4, 7, 11, 15, 13, 6, 1
1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1
1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1
1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1
MAPLE
T:=proc(n, k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1, k-2) + T(n-1, k-1):fi:end:
for n from 0 to 6 do for k from 0 to 2*n do print(T(n, k)); od:od: # Nathaniel Johnston, Apr 18 2011
MATHEMATICA
t[_, 0] = 1; t[_, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 27 2013 *)
PROG
(PARI) T(r, n)=if(r<0||n>2*r, return(0)); if(n==0||n==2*r, return(1)); if(n==1, 3, T(r-1, n-1)+T(r-1, n-2)) /* Ralf Stephan, May 04 2005 */
(Sage)
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2*n): return 1
elif (k==1): return 3
else: return T(n-1, k-2) + T(n-1, k-1)
[[T(n, k) for k in (0..2*n)] for n in (0..12)] # G. C. Greubel, Jun 01 2019
CROSSREFS
Central column is the Lucas numbers without initial 2, cf. A000204. Row sums are A036563. Columns in the right half include A027961, A027962, A027963, A027964, A053298. Bisection triangles are in A026998 and A027011.
Sequence in context: A206496 A097560 A218905 * A319182 A247282 A246685
KEYWORD
nonn,easy,tabf
EXTENSIONS
Edited by Ralf Stephan, May 04 2005
STATUS
approved