This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218905 Irregular triangle, read by rows, of kernel sizes of the integer partitions of n taken in graded reverse lexicographic ordering. 4
 1, 1, 1, 1, 3, 1, 1, 3, 4, 3, 1, 1, 3, 4, 5, 4, 3, 1, 1, 3, 4, 5, 4, 6, 5, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 6, 6, 6, 5, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 7, 8, 6, 6, 6, 5, 4, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 9, 6, 8, 8, 8, 8, 7, 9, 8, 6, 6, 6, 6, 5, 4, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 9, 4, 6, 8, 8, 8, 10, 9, 8, 8, 9, 10, 8, 8, 8, 8, 7, 9, 8, 8, 6, 6, 6, 6, 5, 4, 4, 4, 4, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS The kernel of an integer partition is the intersection of its Ferrers diagram and of the Ferrers diagram of its conjugate. See comments in A080577 for the graded reverse lexicographic ordering. Row length is A000041(n). Row sum is A218904(n). LINKS Alois P. Heinz, Rows n = 1..26, flattened EXAMPLE Triangle begins: 1; 1, 1; 1, 3, 1; 1, 3, 4, 3, 1; 1, 3, 4, 5, 4, 3, 1; 1, 3, 4, 5, 4, 6, 5, 4, 4, 3, 1; 1, 3, 4, 5, 4, 6, 7, 6, 6, 6, 5, 4, 4, 3, 1; 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 7, 8, 6, 6, 6, 5, 4, 4, 4, 3, 1; MAPLE h:= proc(l) local ll; ll:= [seq(add(        `if`(l[j]>=i, 1, 0), j=1..nops(l)), i=1..l[1])];        add(min(l[i], ll[i]), i=1..min(nops(l), nops(ll)))     end: g:= (n, i, l)-> `if`(n=0 or i=1, [h([l[], 1\$n])],     [`if`(i>n, [], g(n-i, i, [l[], i]))[], g(n, i-1, l)[]]): T:= n-> g(n, n, [])[]: seq(T(n), n=1..10);  # Alois P. Heinz, Dec 14 2012 MATHEMATICA h[l_List] := Module[{ll}, ll = Flatten[Table[Sum[If[l[[j]] >= i, 1, 0], {j, 1, Length[l]}], {i, 1, l[[1]]}]]; Sum[Min[l[[i]], ll[[i]]], {i, 1, Min[ Length[l], Length[ll]]}]]; g[n_, i_, l_List] := If[n==0 || i==1, Join[ {h[Join[l, Array[1&, n]]]}], Join[If[i>n, {}, g[n-i, i, Join [l, {i}]]], g[n, i-1, l]]]; T[n_] := g[n, n, {}]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Dec 23 2015, after Alois P. Heinz *) CROSSREFS Cf. A218904. Sequence in context: A124794 A206496 A097560 * A027960 A319182 A247282 Adjacent sequences:  A218902 A218903 A218904 * A218906 A218907 A218908 KEYWORD nonn,tabf,look AUTHOR Olivier Gérard, Nov 08 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 23:00 EST 2019. Contains 319365 sequences. (Running on oeis4.)