The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027958 a(n) = T(n,m) + T(n,m+1) + ... + T(n,n), where m = floor((n+2)/2), T given by A027948. 1
 1, 1, 4, 5, 20, 32, 95, 169, 424, 793, 1816, 3488, 7583, 14789, 31172, 61357, 126892, 251200, 513343, 1019921, 2068496, 4119281, 8313584, 16580800, 33358015, 66594637, 133703500, 267089189, 535524644, 1070217248, 2143959071 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is the sum of the terms of the 2nd half of the n-th row of the A027948 triangle. - Michel Marcus, Oct 01 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,4,-8,-4,8,1,-2). FORMULA G.f.: x*(1 -x -2*x^2 + x^3 +6*x^4 -2*x^6)/((1-2*x)*(1-x^2)(1+x-x^2)*(1-x-x^2)). a(n) = (3 +(-1)^n +2^(n+1) -(-1)^n*Fibonacci(n+1) -Fibonacci(n+4))/2. - G. C. Greubel, Sep 30 2019 MAPLE f:= combinat[fibonacci]: seq((3 +(-1)^n +2^(n+1) -(-1)^n*f(n+1) -f(n+4))/2, n=1..40); # G. C. Greubel, Sep 30 2019 MATHEMATICA Table[(3 +(-1)^n +2^(n+1) -(-1)^n*Fibonacci[n+1] -Fibonacci[n+4])/2, {n, 40}] (* G. C. Greubel, Sep 30 2019 *) PROG (PARI) vector(40, n, f=fibonacci; (3 +(-1)^n +2^(n+1) -(-1)^n*f(n+1) -f(n+4))/2 ) \\ G. C. Greubel, Sep 30 2019 (MAGMA) F:=Fibonacci; [(3 +(-1)^n +2^(n+1) -(-1)^n*F(n+1) -F(n+4))/2: n in [1..40]]; // G. C. Greubel, Sep 30 2019 (Sage) f=fibonacci; [(3 +(-1)^n +2^(n+1) -(-1)^n*f(n+1) -f(n+4))/2 for n in (1..40)] # G. C. Greubel, Sep 30 2019 (GAP) F:=Fibonacci;; List([1..40], n-> (3 +(-1)^n +2^(n+1) -(-1)^n*F(n+1) -F(n+4))/2); # G. C. Greubel, Sep 30 2019 CROSSREFS Cf. A000045, A027948. Sequence in context: A182584 A240860 A059182 * A293942 A064670 A119283 Adjacent sequences:  A027955 A027956 A027957 * A027959 A027960 A027961 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:04 EDT 2020. Contains 334781 sequences. (Running on oeis4.)