The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027959 a(n) = Sum_{k=m..n} T(k,n-k), where m = floor((n+1)/2); a(n) is the n-th diagonal-sum of left justified array T given by A027948. 1
 1, 1, 2, 3, 5, 7, 12, 16, 27, 37, 59, 85, 129, 192, 285, 428, 634, 949, 1412, 2104, 3140, 4671, 6973, 10378, 15478, 23058, 34362, 51216, 76305, 113736, 169465, 252561, 376362, 560851, 835821, 1245503, 1856132, 2765976, 4121947 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,3,1,-3,-1,1). FORMULA G.f.: x*(1+x-x^2-x^3+x^4)/((1-x)*(1+x)*(1-2*x^2-x^3+x^4)). - Colin Barker, Nov 25 2014 MAPLE seq(coeff(series(x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Sep 30 2019 MATHEMATICA T[n_, k_]:= If[k==n, 1, Sum[Binomial[k+j, 2*j-1], {j, 0, n-k}]]; Table[Sum[T[k, n-k], {k, Floor[(n-1)/2], n}], {n, 0, 40}] (* G. C. Greubel, Sep 30 2019 *) PROG (PARI) my(x='x+O('x^40)); Vec(x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4))) \\ G. C. Greubel, Sep 30 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4)) )); // G. C. Greubel, Sep 30 2019 (Sage) def A027959_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4)) ).list() a=A027959_list(40); a[1:] # G. C. Greubel, Sep 30 2019 (GAP) a:=[1, 1, 2, 3, 5, 7];; for n in [7..40] do a[n]:=3*a[n-2]+a[n-3] -3*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 30 2019 CROSSREFS Cf. A027948. Sequence in context: A179822 A319769 A326083 * A060730 A308928 A308992 Adjacent sequences:  A027956 A027957 A027958 * A027960 A027961 A027962 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:21 EDT 2020. Contains 334787 sequences. (Running on oeis4.)