login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027963 T(n,n+3), T given by A027960. 5
1, 6, 19, 47, 101, 199, 370, 661, 1148, 1954, 3278, 5442, 8967, 14696, 23993, 39065, 63483, 103025, 167040, 270655, 438346, 709716, 1148844, 1859412, 3009181, 4869594, 7879855, 12750611, 20631713, 33383659, 54016798, 87401977, 141420392, 228824086, 370246298, 599072310, 969320643 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 3..1000

Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).

FORMULA

G.f.: x^3*(1+2*x)/((1-x)^3*(1-x-x^2)). Differences of A027964. - Ralf Stephan, Feb 07 2004

a(n) = Lucas(n+4) - (3*n^2 + 5*n + 14)/2.

MATHEMATICA

t[_, 0] = 1; t[_, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, n+3], {n, 3, 33}]  (* Jean-Fran├žois Alcover, Dec 27 2013 *)

Table[LucasL[n+4] -(3*n^2+5*n+14)/2, {n, 3, 40}] (* G. C. Greubel, Jun 01 2019 *)

PROG

(PARI) {a(n) = fibonacci(n+5) + fibonacci(n+3) - (3*n^2+5*n+14)/2}; \\ G. C. Greubel, Jun 01 2019

(MAGMA) [Lucas(n+4) -(3*n^2+5*n+14)/2: n in [3..40]]; // G. C. Greubel, Jun 01 2019

(Sage) [lucas_number2(n+4, 1, -1) - (3*n^2+5*n+14)/2 for n in (3..40)] # G. C. Greubel, Jun 01 2019

(GAP) List([3..40], n-> Lucas(1, -1, n+4)[2] - (3*n^2+5*n+14)/2 ) # G. C. Greubel, Jun 01 2019

CROSSREFS

Cf. A000032.

Sequence in context: A070893 A272047 A267829 * A034199 A272752 A272803

Adjacent sequences:  A027960 A027961 A027962 * A027964 A027965 A027966

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Terms a(34) onward added by G. C. Greubel, Jun 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 12:31 EDT 2019. Contains 328026 sequences. (Running on oeis4.)