login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027960 'Lucas array': triangular array T read by rows. 33

%I

%S 1,1,3,1,1,3,4,4,1,1,3,4,7,8,5,1,1,3,4,7,11,15,13,6,1,1,3,4,7,11,18,

%T 26,28,19,7,1,1,3,4,7,11,18,29,44,54,47,26,8,1,1,3,4,7,11,18,29,47,73,

%U 98,101,73,34,9,1,1,3,4,7,11,18,29,47,76,120,171

%N 'Lucas array': triangular array T read by rows.

%C The k-th row contains 2k+1 numbers.

%C Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.

%C T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1<=i<=n, s(i)=s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0<=s(i)<=2i-2.

%H Nathaniel Johnston, <a href="/A027960/b027960.txt">Table of n, a(n) for n = 0..10000</a>

%F T(n, k) = Lucas(k+1) for k<=n, otherwise the (2n-k)th coefficient of the power series for (1+2x)/{(1-x-x^2)(1-x)^(k-n)}.

%F Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k)=T(n-1, k-2)+T(n-1, k-1) for k=2, 3, ..., 2n-1.

%e ....................1

%e ..................1,3,1

%e ................1,3,4,4,1

%e ..............1,3,4,7,8,5,1

%e ...........1,3,4,7,11,15,13,6,1

%e ........1,3,4,7,11,18,26,28,19,7,1

%e .....1,3,4,7,11,18,29,44,54,47,26,8,1

%e ..1,3,4,7,11,18,29,47,73,98,101,73,34,9,1

%p T:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1,k-2) + T(n-1,k-1):fi:end:

%p for n from 0 to 6 do for k from 0 to 2*n do print(T(n,k));od:od: # _Nathaniel Johnston_, Apr 18 2011

%t t[_, 0] = 1; t[_, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* _Jean-Fran├žois Alcover_, Dec 27 2013 *)

%o (PARI) T(r,n)=if(r<0||n>2*r,return(0)); if(n==0||n==2*r,return(1)); if(n==1,3,T(r-1,n-1)+T(r-1,n-2)) /* _Ralf Stephan_, May 04 2005 */

%Y Central column is the Lucas numbers without initial 2, cf. A000204. Row sums are A036563. Columns in the right half include A027961, A027962, A027963, A027964, A053298. Bisection triangles are in A026998 and A027011.

%K nonn,easy,tabf

%O 0,3

%A _Clark Kimberling_

%E Edited by _Ralf Stephan_, May 04 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 06:59 EST 2019. Contains 319188 sequences. (Running on oeis4.)