OFFSET
0,9
COMMENTS
Also number of partitions of n into 6 parts. - Washington Bomfim, Jan 15 2021
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
G. E. Andrews, Partitions: At the Interface of q-Series and Modular Forms, The Ramanujan Journal 7, 385-400 (2003), Eq.(3.10).
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1).
FORMULA
G.f.: x^6 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). - Colin Barker, Dec 20 2012
a(n) = A008284(n,6). - Robert A. Russell, May 13 2018
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} 1. - Wesley Ivan Hurt, Jun 29 2019
a(n) = round((1/86400)*n^5 + (1/3840)*n^4 + (19/12960)*n^3 - (n mod 2)*(1/384)*n^2 + (1/17280)*b(n mod 6)*n), where b(0)=96, b(1)=b(5)=-629, b(2)=b(4)=-224, and b(3)=-309. - Washington Bomfim and Jon E. Schoenfield, Jan 16 2021
MATHEMATICA
Table[ Length[ Select[ Partitions[n], First[ # ] == 6 & ]], {n, 1, 60} ]
CoefficientList[Series[x^6/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1}, Append[Table[0, {20}], 1], 115], 14] (* Robert A. Russell, May 17 2018 *)
PROG
(PARI) my(x='x+O('x^99)); concat(vector(6), Vec(x^6/prod(k=1, 6, 1-x^k))) \\ Altug Alkan, May 17 2018
(PARI) a = vector(60, n, n--; round((n+11)*((6*n^4+249*n^3+2071*n^2 -4931*n+40621) /518400 +n\2*(n+10)/192+((n+1)\3+n\3*2)/54))); a = concat([0, 0, 0, 0, 0, 0], a) \\ Washington Bomfim, Jan 16 2021
(GAP) List([0..70], n->NrPartitions(n, 6)); # Muniru A Asiru, May 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017
STATUS
approved