login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026812 Number of partitions of n in which the greatest part is 6. 16
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454, 532, 612, 709, 811, 931, 1057, 1206, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)

Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1).

FORMULA

G.f.: x^6 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). [Colin Barker, Dec 20 2012]

a(n) = A008284(n,6). - Robert A. Russell, May 13 2018

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} 1. - Wesley Ivan Hurt, Jun 29 2019

MATHEMATICA

Table[ Length[ Select[ Partitions[n], First[ # ] == 6 & ]], {n, 1, 60} ]

CoefficientList[Series[x^6/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)

Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1},

Append[Table[0, {20}], 1], 115], 14] (* Robert A. Russell, May 17 2018 *)

PROG

(PARI) x='x+O('x^99); concat(vector(6), Vec(x^6/prod(k=1, 6, 1-x^k))) \\ Altug Alkan, May 17 2018

(GAP) List([0..70], n->NrPartitions(n, 6)); # Muniru A Asiru, May 17 2018

CROSSREFS

Essentially same as A001402.

Cf. A026810, A026811, A026813, A026814, A026815, A026816.

Sequence in context: A218506 A238659 A234666 * A001402 A008629 A238864

Adjacent sequences:  A026809 A026810 A026811 * A026813 A026814 A026815

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Robert G. Wilson v, Jan 11 2002

a(0)=0 prepended by Seiichi Manyama, Jun 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 02:18 EDT 2019. Contains 328244 sequences. (Running on oeis4.)