This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026811 Number of partitions of n in which the greatest part is 5. 12
 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Essentially same as A001401: five zeros followed by A001401. Also number of partitions of n into exactly 5 parts. REFERENCES D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p.56, exercise 31. LINKS Washington Bomfim, Table of n, a(n) for n = 0..10000 FORMULA a(n) = round( ((n^4+10*(n^3+n^2)-75*n -45*n*(-1)^n)) / 2880 ). - Washington Bomfim, Jul 03 2012 G.f.: x^5/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). [Joerg Arndt, Jul 04 2012] a(n) = A008284(n,5). - Robert A. Russell, May 13 2018 MATHEMATICA Table[Count[IntegerPartitions[n], {5, ___}], {n, 0, 55}] (* corrected by Harvey P. Dale, Oct 24 2011 *) Table[Length[IntegerPartitions[n, {5}]], {n, 0, 55}] (* Eric Rowland, Mar 02 2017 *) CoefficientList[Series[x^5/Product[1 - x^k, {k, 1, 5}], {x, 0, 65}], x] (* Robert A. Russell, May 13 2018 *) Drop[LinearRecurrence[{1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1}, Append[Table[0, {14}], 1], 110], 9] (* Robert A. Russell, May 17 2018 *) PROG (PARI) a(n)=round((n^4+10*(n^3+n^2)-75*n-45*(-1)^n*n)/2880); for(n=0, 10000, print(n, " ", a(n))); /* b-file format */ /* Washington Bomfim, Jul 03 2012 */ (PARI) x='x+O('x^99); concat(vector(5), Vec(x^5/prod(k=1, 5, 1-x^k))) \\ Altug Alkan, May 17 2018 (GAP) List([0..70], n->NrPartitions(n, 5)); # Muniru A Asiru, May 17 2018 CROSSREFS Cf. A026810, A026812, A026813, A026814, A026815, A026816, A002622 (partial sums), A008667 (first differences). Sequence in context: A103232 A062684 A033485 * A001401 A008628 A038499 Adjacent sequences:  A026808 A026809 A026810 * A026812 A026813 A026814 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Robert G. Wilson v, Jan 11 2002 a(0)=0 inserted by Joerg Arndt, Jul 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 13:48 EST 2018. Contains 318063 sequences. (Running on oeis4.)