login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026813 Number of partitions of n in which the greatest part is 7. 24
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1367, 1579, 1824, 2093, 2400, 2738, 3120, 3539, 4011, 4526, 5102, 5731, 6430, 7190, 8033, 8946, 9953, 11044, 12241 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)

Index entries for sequences related to partitions

FORMULA

G.f.: x^7 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)). [Colin Barker, Feb 22 2013]

a(n) = A008284(n,7). - Robert A. Russell, May 13 2018

a(n) = A008636(n-7). - R. J. Mathar, Feb 13 2019

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3} Sum_{i=j..floor((n-j-k-l-m-o)/2)} 1. - Wesley Ivan Hurt, Jun 30 2019

MATHEMATICA

Table[ Length[ Select[ Partitions[n], First[ # ] == 7 & ]], {n, 1, 60} ]

CoefficientList[Series[x^7/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)

Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 2, 0, 0, 0, -2,

  -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, -1, 1},

  Append[Table[0, {27}], 1], 121], 20] (* Robert A. Russell, May 17 2018 *)

PROG

(PARI) x='x+O('x^99); concat(vector(7), Vec(x^7/prod(k=1, 7, 1-x^k))) \\ Altug Alkan, May 17 2018

(GAP) List([0..70], n->NrPartitions(n, 7)); # Muniru A Asiru, May 17 2018

(MAGMA) [#Partitions(n, 7): n in [0..53]]; // Marius A. Burtea, Jul 01 2019

CROSSREFS

Cf. A026810, A026811, A026812, A026814, A026815, A026816.

Sequence in context: A319472 A309099 A218507 * A008636 A008630 A238865

Adjacent sequences:  A026810 A026811 A026812 * A026814 A026815 A026816

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Robert G. Wilson v, Jan 11 2002

a(0)=0 prepended by Seiichi Manyama, Jun 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 08:05 EDT 2019. Contains 328252 sequences. (Running on oeis4.)