login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026814 Number of partitions of n in which the greatest part is 8. 23
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764, 919, 1090, 1297, 1527, 1801, 2104, 2462, 2857, 3319, 3828, 4417, 5066, 5812, 6630, 7564, 8588, 9749, 11018, 12450, 14012, 15765, 17674 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)

FORMULA

G.f.: x^8 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)). [Colin Barker, Feb 22 2013]

a(n) = A008284(n,8). - Robert A. Russell, May 13 2018

a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} 1. - Wesley Ivan Hurt, Jul 04 2019

MATHEMATICA

Table[ Length[ Select[ Partitions[n], First[ # ] == 8 & ]], {n, 1, 60} ]

CoefficientList[Series[x^8/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)

Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, 0, -1, 0, 1, 2, 1, 0, 1, -1,

  -1, -2, -1, -1, 1, 0, 1, 2, 1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, -1},

Append[Table[0, {35}], 1], 128], 27] (* Robert A. Russell, May 17 2018 *)

PROG

(PARI) x='x+O('x^99); concat(vector(8), Vec(x^8/prod(k=1, 8, 1-x^k))) \\ Altug Alkan, May 17 2018

(GAP) List([0..70], n->NrPartitions(n, 8)); # Muniru A Asiru, May 17 2018

CROSSREFS

Cf. A026810, A026811, A026812, A026813, A026815, A026816.

Sequence in context: A309194 A319474 A218508 * A008637 A008631 A238866

Adjacent sequences:  A026811 A026812 A026813 * A026815 A026816 A026817

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Robert G. Wilson v, Jan 11 2002

a(0)=0 prepended by Seiichi Manyama, Jun 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 13:24 EDT 2019. Contains 328299 sequences. (Running on oeis4.)