login
A017520
a(n) = (11*n + 10)^12.
12
1000000000000, 7355827511386641, 1152921504606846976, 39959630797262576401, 614787626176508399616, 5688009063105712890625, 37133262473195501387776, 188031682201497672618081, 784716723734800033386496, 2812664781782894485727281
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (1000000000000 + 7342827511386641*x + 1057373746958820643*x^2 + 25545119783261723711*x^3 + 183137251503172391205*x^4 + 488143704350667868074*x^5 + 528998728358533109886*x^6 + 234662813343627300126*x^7 + 39635845367890711434*x^8 + 2102226021911800565*x^9 + 21798715126193071*x^10 + 8916100448243*x^11 + x^12)/(1-x)^13.
E.g.f.: (1000000000000 + 7354827511386641*x + 569105424792036847*x^2 + 6087155460996032566*x^3 + 19243217071043901221*x^4 + 25018123360727376000*x^5 + 15895943833149490132*x^6 + 5437280856006223356*x^7 + 1053961441036472067*x^8 + 117674853236661875*x^9 + 7405264410708505*x^10 + 241373673336906*x^11 + 3138428376721*x^12)*exp(x). (End)
MAPLE
seq((11*n+10)^12, n=0..20); # G. C. Greubel, Oct 29 2019
MATHEMATICA
(11*Range[0, 20]+10)^12 (* Harvey P. Dale, Oct 14 2012 *)
PROG
(Maxima) makelist((11*n+10)^12, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
(PARI) vector(21, n, (11*n-1)^12) \\ G. C. Greubel, Oct 29 2019
(Magma) [(11*n+10)^12: n in [0..20]]; // G. C. Greubel, Oct 29 2019
(Sage) [(11*n+10)^12 for n in (0..20)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..20], n-> (11*n+10)^12); # G. C. Greubel, Oct 29 2019
CROSSREFS
Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), this sequence (m=12).
Sequence in context: A180616 A017184 A017280 * A017652 A168174 A291321
KEYWORD
nonn,easy
STATUS
approved