login
A017509
a(n) = 11*n + 10.
16
10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 362, 373, 384, 395, 406, 417, 428, 439, 450, 461, 472, 483, 494, 505, 516, 527, 538, 549, 560, 571, 582
OFFSET
0,1
COMMENTS
If k is any member of A045572, the sequence lists the numbers n such that (n^k+1)/11 is a nonnegative integer. See also A267541. - Bruno Berselli, Jan 16 2016
FORMULA
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10 + x)/(1-x)^2.
E.g.f.: (10 + 11*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)
a(n) = A008591(n+1) + A005408(n). - Leo Tavares, Oct 25 2022
MAPLE
seq((11*n+10), n=0..60); # G. C. Greubel, Oct 29 2019
MATHEMATICA
Range[10, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 29 2011 *)
(11*Range[60] -1) (* G. C. Greubel, Oct 29 2019 *)
PROG
(Magma) [11*n+10: n in [0..60]]; // Vincenzo Librandi, Sep 18 2011
(PARI) a(n)=11*n+10 \\ Charles R Greathouse IV, Jul 10 2016
(Sage) [(11*n+10) for n in (0..60)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..60], n-> (11*n+10)); # G. C. Greubel, Oct 29 2019
(Python)
def a(n): return 11*n + 10
print([a(n) for n in range(53)]) # Michael S. Branicky, Oct 21 2021
CROSSREFS
Cf. A211013 (partial sums), A254322 (partial products).
Powers of the form (11*n+10)^m: this sequence (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).
Sequence in context: A061470 A095778 A065438 * A184989 A072806 A374899
KEYWORD
nonn,easy
STATUS
approved