login
A017518
a(n) = (11*n + 10)^10.
12
10000000000, 16679880978201, 1125899906842624, 21611482313284249, 210832519264920576, 1346274334462890625, 6428888932339941376, 24842341419143568849, 81707280688754689024, 236736367459211723401
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000000000 + 16569880978201*x + 942971216082413*x^2 + 10142326791816440*x^3 + 32281828333734992*x^4 + 35474405873171354*x^5 + 13610715373012154*x^6 + 1612091585741792*x^7 + 40745420207240*x^8 + 61917364213*x^9 + x^10)/(1-x)^11.
E.g.f.: (10000000000 + 16669880978201*x + 546275072443111*x^2 + 3047302039281830*x^3 + 5461469997038605*x^4 + 4142091263396625*x^5 + 1525402079982627*x^6 + 290796919504080*x^7 + 28906295102850*x^8 + 1402978876145*x^9 + 25937424601*x^10)*exp(x). (End)
MAPLE
seq((11*n+10)^10, n=0..20); # G. C. Greubel, Oct 29 2019
MATHEMATICA
(11Range[0, 20]+10)^10 (* Harvey P. Dale, Jul 15 2017 *)
PROG
(PARI) vector(21, n, (11*n-1)^10) \\ G. C. Greubel, Oct 29 2019
(Magma) [(11*n+10)^10: n in [0..20]]; // G. C. Greubel, Oct 29 2019
(Sage) [(11*n+10)^10 for n in (0..20)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..20], n-> (11*n+10)^10); # G. C. Greubel, Oct 29 2019
CROSSREFS
Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), this sequence (m=10), A017519 (m=11), A017520 (m=12).
Sequence in context: A130431 A017182 A017278 * A017650 A244450 A293791
KEYWORD
nonn,easy
STATUS
approved