login
A017519
a(n) = (11*n + 10)^11.
12
100000000000, 350277500542221, 36028797018963968, 929293739471222707, 11384956040305711104, 87507831740087890625, 488595558857835544576, 2161283703465490489863, 8007313507497959524352, 25804264053054077850709
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (100000000000 + 349077500542221*x + 31832067012457316*x^2 + 520044490279441677*x^3 + 2534320219783371888*x^4 + 4468718880116382474* x^5 + 3020981097246519528*x^6 + 752734159745082834*x^7 + 58804165095530448*x^8 + 943893657465737*x^9 + 743008370676*x^10 + x^11)/(1-x)^12.
E.g.f.: (100000000000 + 350177500542221*x + 17664171008939763*x^2 + 137043013485992911*x^3 + 328439702272184800*x^4 + 329312102088205280*x^5 + 161493561976042527*x^6 + 42078754876663857*x^7 + 6031583034624180*x^8 + 470893943631155*x^9 + 18545258589715*x^10 + 285311670611*x^11)*exp(x). (End)
MAPLE
seq((11*n+10)^11, n=0..20); # G. C. Greubel, Oct 29 2019
MATHEMATICA
(11*Range[0, 20]+10)^11 (* Harvey P. Dale, Nov 22 2014 *)
PROG
(PARI) vector(21, n, (11*n-1)^11) \\ G. C. Greubel, Oct 29 2019
(Magma) [(11*n+10)^11: n in [0..20]]; // G. C. Greubel, Oct 29 2019
(Sage) [(11*n+10)^11 for n in (0..20)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..20], n-> (11*n+10)^11); # G. C. Greubel, Oct 29 2019
CROSSREFS
Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), this sequence (m=11), A017520 (m=12).
Sequence in context: A159757 A017183 A017279 * A017651 A072145 A192108
KEYWORD
nonn,easy
STATUS
approved