login
A017512
a(n) = (11*n + 10)^4.
12
10000, 194481, 1048576, 3418801, 8503056, 17850625, 33362176, 57289761, 92236816, 141158161, 207360000, 294499921, 406586896, 547981281, 723394816, 937890625, 1196883216, 1506138481, 1871773696, 2300257521, 2798410000, 3373402561, 4032758016, 4784350561
OFFSET
0,1
FORMULA
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000 + 144481*x + 176171*x^2 + 20731*x^3 + x^4)/(1-x)^5.
E.g.f.: (10000 + 184481*x + 334807*x^2 + 141086*x^3 + 14641*x^4)*exp(x). (End)
MAPLE
A017512:=n->(11*n+10)^4: seq(A017512(n), n=0..30); # Wesley Ivan Hurt, Apr 11 2017
MATHEMATICA
(11*Range[0, 30]+10)^4 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {10000, 194481, 1048576, 3418801, 8503056}, 30] (* Harvey P. Dale, Dec 24 2014 *)
PROG
(PARI) vector(31, n, (11*n-1)^4) \\ G. C. Greubel, Oct 29 2019
(Magma) [(11*n+10)^4: n in [0..30]]; // G. C. Greubel, Oct 29 2019
(Sage) [(11*n+10)^4 for n in (0..30)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..30], n-> (11*n+10)^4); # G. C. Greubel, Oct 29 2019
CROSSREFS
Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), this sequence (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).
Sequence in context: A326640 A017176 A017272 * A096968 A017644 A250440
KEYWORD
nonn,easy
STATUS
approved