login
A017516
a(n) = (11*n + 10)^8.
12
100000000, 37822859361, 1099511627776, 11688200277601, 72301961339136, 318644812890625, 1113034787454976, 3282116715437121, 8507630225817856, 19925626416901921, 42998169600000000, 86730203469006241
OFFSET
0,1
LINKS
FORMULA
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Mar 28 2015
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (100000000 + 36922859361*x + 762705893527*x^2 + 3145818564613*x^3 + 3526057254339*x^4 + 1096474378339*x^5 + 74441150053*x^6 + 429981687*x^7 + x^8)/(1-x)^9.
E.g.f.: (100000000 + 37722859361*x + 511982954527*x^2 + 1417172328726*x^3 + 1333126606581*x^4 + 526757558250*x^5 + 94718280426*x^6 + 7561022348*x^7 + 214358881*x^8)*exp(x). (End)
MAPLE
seq((11*n+10)^8, n=0..20); # G. C. Greubel, Oct 29 2019
MATHEMATICA
(11*Range[0, 20]+10)^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {100000000, 37822859361, 1099511627776, 11688200277601, 72301961339136, 318644812890625, 1113034787454976, 3282116715437121, 8507630225817856}, 20] (* Harvey P. Dale, Mar 28 2015 *)
PROG
(PARI) vector(21, n, (11*n-1)^8) \\ G. C. Greubel, Oct 29 2019
(Magma) [(11*n+10)^8: n in [0..20]]; // G. C. Greubel, Oct 29 2019
(Sage) [(11*n+10)^8 for n in (0..20)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..20], n-> (11*n+10)^8); # G. C. Greubel, Oct 29 2019
CROSSREFS
Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), this sequence (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).
Sequence in context: A033424 A017180 A017276 * A017648 A158214 A052096
KEYWORD
nonn,easy
STATUS
approved