This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016209 Expansion of 1/((1-x)(1-3x)(1-5x)). 7
 1, 9, 58, 330, 1771, 9219, 47188, 239220, 1205941, 6059229, 30384718, 152189310, 761743711, 3811110039, 19062724648, 95335146600, 476740303081, 2383895225649, 11920057258978, 59602029687090 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES For a combinatorial interpretation following from a(n) = A039755(n+2,2) = h^{(3)}_n, the complete homogeneous symmetric function of degree n in the symbols {1, 3, 5} see A039755. - Wolfdieter Lang, May 26 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (9,-23,15). FORMULA a(n) = A039755(n+2, 2). a(n) = (5^(n+2) - 2*3^(n+2)+1)/8 = a(n-1) + A005059(n+1) = 8*a(n-1) - 15*a(n-2) + 1 = (A003463(n+2) - A003462(n+2))/2. - Henry Bottomley, Jun 06 2000 G.f.: 1/((1-x)(1-3*x)(1-5*x)). See the name. E.g.f.: (25*exp(5*x) - 18*exp(3*x) + exp(x))/8, from the e.g.f. of the third column (k=2) of A039755. - Wolfdieter Lang, May 26 2017 EXAMPLE a(2) = h^{(3)}_2 = 1^2 + 3^2 + 5^2 + 1^1*(3^1 + 5^1) + 3^1*5^1 = 58. - Wolfdieter Lang, May 26 2017 MAPLE A016209 := proc(n) (5^(n+2)-2*3^(n+2)+1)/8; end proc: # R. J. Mathar, Mar 22 2011 MATHEMATICA Join[{a=1, b=9}, Table[c=8*b-15*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2011 *) PROG (PARI) a(n)=if(n<0, 0, n+=2; (5^n-2*3^n+1)/8) (MAGMA) [(5^(n+2)-2*3^(n+2)+1)/8: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011 CROSSREFS Cf. A016218, A016208, A000392, A000225, A003462, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A016256, A039755, A021424. Sequence in context: A026750 A009034 A026377 * A196920 A129173 A271271 Adjacent sequences:  A016206 A016207 A016208 * A016210 A016211 A016212 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 17:25 EDT 2019. Contains 326059 sequences. (Running on oeis4.)