The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A021424 Expansion of 1/((1-x)(1-3x)(1-5x)(1-7x)). 3
 1, 16, 170, 1520, 12411, 96096, 719860, 5278240, 38153621, 273134576, 1942326750, 13748476560, 97001079631, 682818667456, 4798793396840, 33686888924480, 236284962774441, 1656378634646736, 11606570499786130 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is h^{(4)}_n, the complete homogeneous symmetric function of the four symbols s_j = 1 + 2*j, j = 0..3, of degree n >= 1, with h^{(4)}_0 = 1. See an example below. Thus it is the (dimensionless) volume of all multichoose(4, n) = binomial(n+3, 3) polytopes of dimension n with side lengths from the set {1, 3, 5, 7}. - Wolfdieter Lang, May 26 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (16,-86,176,-105). FORMULA a(n) = (7^n- 3*5^n+ 3^(n+1)-1)/48. - Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 21 2001 a(n) = 12*a(n-1) - 35*a(n-2) + (3^n-1)/2 with a(0)=1, a(1)=16. - Vincenzo Librandi, Jul 09 2013 a(n) = 16*a(n-1) - 86*a(n-2) + 176*a(n-3) - 105*a(n-4), with a(0)=1, a(1)=16, a(2)=170, a(3)=1520. - Vincenzo Librandi, Jul 09 2013 G.f.: 1/((1-x)*(1-3*x)*(1-5*x)*(1-7*x)). See the name. E.g.f.: (343*exp(7*x) - 375*exp(5*x) + 81*exp(3*x) - exp(x))/48, from the e.g.f. of the fourth column (k=3) of A039755. - Wolfdieter Lang, May 26 2017 EXAMPLE a(2) = h^{(4)}_2 = (1^2 + 3^2 + 5^2 + 7^2) + (1^1*(3^1 + 5^1 + 7^1) + 3^1*(5^1 + 7^1) + 5^1*7^1) = 84 + 86 = 120. - Wolfdieter Lang, May 26 2017 MATHEMATICA Table[(7^n - 3*5^n + 3^(n + 1) - 1)/48, {n, 3, 60}] CoefficientList[Series[1 / ((1 - x) (1 - 3 x) (1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 09 2013 *) LinearRecurrence[{16, -86, 176, -105}, {1, 16, 170, 1520}, 30] (* Harvey P. Dale, May 26 2014 *) PROG (Magma) m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-5*x)*(1-7*x)))); /* or */ I:=[1, 16, 170, 1520]; [n le 4 select I[n] else 16*Self(n-1)-86*Self(n-2)+176*Self(n-3)-105*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 09 2013 (PARI) x='x+O('x^99); Vec(1/((1-x)*(1-3*x)*(1-5*x)*(1-7*x))) \\ Altug Alkan, Oct 11 2017 CROSSREFS Cf. A039755 (column k=3), A016209. Sequence in context: A050628 A048557 A174645 * A200673 A230510 A238725 Adjacent sequences: A021421 A021422 A021423 * A021425 A021426 A021427 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 15:03 EST 2022. Contains 358534 sequences. (Running on oeis4.)