login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005911 Number of points on surface of truncated cube: 46n^2 + 2.
(Formerly M5292)
1
1, 48, 186, 416, 738, 1152, 1658, 2256, 2946, 3728, 4602, 5568, 6626, 7776, 9018, 10352, 11778, 13296, 14906, 16608, 18402, 20288, 22266, 24336, 26498, 28752, 31098, 33536, 36066, 38688, 41402, 44208, 47106, 50096, 53178, 56352, 59618, 62976, 66426, 69968 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

LINKS

Table of n, a(n) for n=0..39.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).

FORMULA

a(0)=1, a(1)=48, a(2)=186, a(3)=416, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2014

MAPLE

A005911:=-(z+1)*(z**2+44*z+1)/(z-1)**3; [Conjectured by Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

Join[{1}, Table[46n^2+2, {n, 50}]] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {48, 186, 416}, 50]] (* Harvey P. Dale, Aug 19 2014 *)

CROSSREFS

Sequence in context: A066134 A233682 A233675 * A130566 A233792 A233967

Adjacent sequences:  A005908 A005909 A005910 * A005912 A005913 A005914

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Harvey P. Dale, Aug 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 11:54 EDT 2020. Contains 335398 sequences. (Running on oeis4.)