login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005911
Number of points on surface of truncated cube: 46n^2 + 2 for n>0.
(Formerly M5292)
0
1, 48, 186, 416, 738, 1152, 1658, 2256, 2946, 3728, 4602, 5568, 6626, 7776, 9018, 10352, 11778, 13296, 14906, 16608, 18402, 20288, 22266, 24336, 26498, 28752, 31098, 33536, 36066, 38688, 41402, 44208, 47106, 50096, 53178, 56352, 59618, 62976, 66426, 69968
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: 1 -2*x*(24+21*x+x^2)/(x-1)^3. - Simon Plouffe in his 1992 dissertation
a(0)=1, a(1)=48, a(2)=186, a(3)=416, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2014
Sum_{n>=0} 1/a(n) = 3/4+ 1/92 *sqrt(23)*Pi*coth(Pi/sqrt 23) = 1.03477653.... - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, Table[46n^2+2, {n, 50}]] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {48, 186, 416}, 50]] (* Harvey P. Dale, Aug 19 2014 *)
PROG
(PARI) a(n)=if(n, 46*n^2+2, 1) \\ Charles R Greathouse IV, Oct 20 2022
CROSSREFS
Sequence in context: A066134 A233682 A233675 * A130566 A233792 A233967
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Aug 19 2014
STATUS
approved