login
A233682
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 6 (6 maximizes T(1,1))
9
48, 184, 184, 648, 928, 648, 2440, 4448, 4448, 2440, 8712, 23568, 28544, 23568, 8712, 32456, 117744, 216592, 216592, 117744, 32456, 116872, 621904, 1500800, 2442208, 1500800, 621904, 116872, 432456, 3145968, 11482368, 25036784, 25036784
OFFSET
1,1
COMMENTS
Table starts
......48.......184.........648..........2440............8712.............32456
.....184.......928........4448.........23568..........117744............621904
.....648......4448.......28544........216592.........1500800..........11482368
....2440.....23568......216592.......2442208........25036784.........289389648
....8712....117744.....1500800......25036784.......365293440........6336415296
...32456....621904....11482368.....289389648......6336415296......169016684160
..116872...3145968....81243904....3057995568.....95799636288.....3879764059776
..432456..16510480...617735680...35239626640...1660462199232...103768584198400
.1565704..84078896..4416166400..377551693872..25500227965248..2432577744933760
.5768392.439062352.33345630720.4321333099024.438642994287168.64581965636210432
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +12*a(n-2) -4*a(n-3) -16*a(n-4)
k=2: [order 10]
k=3: [order 17]
k=4: [order 45]
k=5: [order 99]
EXAMPLE
Some solutions for n=3 k=4
..0..2..0..2..0....1..1..1..2..1....0..1..3..1..0....0..0..0..2..3
..0..1..0..1..0....0..2..0..2..3....0..2..2..2..2....1..2..1..2..1
..2..1..2..1..2....0..1..1..2..1....0..1..0..1..3....0..2..3..2..0
..2..3..3..1..3....2..2..3..2..3....0..2..2..2..2....0..1..3..1..1
CROSSREFS
Sequence in context: A244178 A131683 A066134 * A233675 A005911 A130566
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 14 2013
STATUS
approved