login
A233792
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11 (11 maximizes T(1,1))
9
48, 188, 188, 720, 864, 720, 2856, 3932, 3932, 2856, 11040, 19396, 20816, 19396, 11040, 43888, 93100, 125976, 125976, 93100, 43888, 169920, 479628, 716768, 966892, 716768, 479628, 169920, 675744, 2368972, 4674280, 6892448, 6892448, 4674280
OFFSET
1,1
COMMENTS
Table starts
.......48.......188........720.........2856.........11040...........43888
......188.......864.......3932........19396.........93100..........479628
......720......3932......20816.......125976........716768.........4674280
.....2856.....19396.....125976.......966892.......6892448........58623880
....11040.....93100.....716768......6892448......58298272.......635439176
....43888....479628....4674280.....58623880.....635439176......9169500236
...169920...2368972...27765752....443965172....5726453720....106891645888
...675744..12497004..190316292...4064000052...69211180340...1738779775140
..2616960..62641260.1159969064..31925115348..649660154664..21208274486100
.10407872.334456748.8197609072.306087278904.8455130486096.376882661513356
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 18*a(n-2) -40*a(n-4)
k=2: [order 11]
k=3: [order 34]
EXAMPLE
Some solutions for n=3 k=4
..2..1..2..3..1....1..0..2..3..3....2..1..1..2..1....0..2..2..0..2
..1..3..1..3..2....2..2..1..1..2....0..2..3..3..1....0..1..0..1..0
..2..1..2..3..1....1..0..2..3..1....0..1..1..2..1....2..0..2..2..2
..1..3..3..1..2....2..0..1..3..2....2..2..3..3..1....1..0..1..0..1
CROSSREFS
Sequence in context: A233675 A005911 A130566 * A233967 A233785 A233960
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 15 2013
STATUS
approved