login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005914 Number of points on surface of hexagonal prism: 12n^2 + 2 for n>0 (coordination sequence for W(2)).
(Formerly M4931)
11
1, 14, 50, 110, 194, 302, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810, 6350, 6914, 7502, 8114, 8750, 9410, 10094, 10802, 11534, 12290, 13070, 13874, 14702, 15554, 16430, 17330, 18254, 19202, 20174, 21170 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>=1 a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n,n+1} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007

Equals binomial transform of [1, 13, 23, 1, -1, 1, -1, 1,...]. - Gary W. Adamson, Apr 22 2008

First bisection of A005918. After 1, all terms are in A000408 (see Formula section). - Bruno Berselli, Feb 07 2012

Also sequence found by reading the segment (1, 14) together with the line from 14, in the direction 14, 50,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Nov 02 2012

Unique sequence such that for all n>0 n*a(1) +(n-1)*a(2) +(n-3)*a(3) +... +2*a(2) +a(1) = n^4. - Warren Breslow, Dec 12 2014

REFERENCES

Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (229) cI2

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

O. Bagdasar, On Some Functions Involving the lcm and gcd of Integer Tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.

R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences

R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (1+x)*(1+10*x+x^2)/(1-x)^3. - Simon Plouffe (see MAPLE line)

a(n) = (2n-1)^2+(2n)^2+(2n+1)^2 for n>0. - Bruno Berselli, Jan 30 2012

a(0)=1, a(1)=14, a(2)=50, a(3)=110, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Oct 09 2012

E.g.f.: exp(x)*(12*x^2+12*x+2)-1. - Alois P. Heinz, Sep 10 2013

MAPLE

A005914:=-(z+1)*(z**2+10*z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation.

MATHEMATICA

Table[If[n == 0, 1, 12*n^2 + 2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)

Join[{1}, LinearRecurrence[{3, -3, 1}, {14, 50, 110}, 50]] (* Harvey P. Dale, Oct 09 2012 *)

PROG

(PARI) a(n)=12*n^2+2 \\ Charles R Greathouse IV, Jan 31 2012

CROSSREFS

First differences of A005917.

Cf. A206399.

Sequence in context: A043378 A044116 A044497 * A009960 A009928 A050441

Adjacent sequences:  A005911 A005912 A005913 * A005915 A005916 A005917

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane and Ralf W. Grosse-Kunstleve

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 21 19:34 EDT 2018. Contains 304400 sequences. (Running on oeis4.)