login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005918 Number of points on surface of square pyramid: 3*n^2 + 2 (n>0).
(Formerly M3843)
13
1, 5, 14, 29, 50, 77, 110, 149, 194, 245, 302, 365, 434, 509, 590, 677, 770, 869, 974, 1085, 1202, 1325, 1454, 1589, 1730, 1877, 2030, 2189, 2354, 2525, 2702, 2885, 3074, 3269, 3470, 3677, 3890, 4109, 4334, 4565, 4802, 5045, 5294, 5549, 5810, 6077, 6350, 6629 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also coordination sequence of the 5-connected net = hexagonal net X integers.

Also (except for initial term) numbers of the form 3n^2+2 that are not squares. All numbers 3n^2+2 are == 2 (mod 3), and hence not squares. - Cino Hilliard, Mar 01 2003, modified by Franklin T. Adams-Watters, Jun 27 2014

If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

Sums of three consecutive squares: (n - 2)^2 + (n - 1)^2 + n^2 for n > 1. - Keith Tyler, Aug 10 2010

REFERENCES

H. S. M. Coxeter, Polyhedral numbers, in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A. F. Wells, Three-Dimensional Nets and Polyhedra, Fig. 15.1 (e).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Milan Janjic, Two Enumerative Functions

M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (1 - x^2)*(1 - x^3)/(1 - x)^5.

Euler transform of length 3 sequence [ 5, -1, -1]. - Michael Somos, Aug 07 2014

a(-n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3. - Colin Barker, Aug 07 2014

a(0) = 1; for n > 0, a(n) = A120328(n-1). - Doug Bell, Aug 18 2015

E.g.f.: (2+3*x+3*x^2)*exp(x)-1. - Robert Israel, Aug 18 2015

EXAMPLE

G.f. = 1 + 5*x + 14*x^2 + 29*x^3 + 50*x^4 + 77*x^5 + 110*x^6 + 149*x^7 + ...

MAPLE

A005918:=-(z+1)*(z**2+z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation.

MATHEMATICA

Join[{1}, Table[Plus@@(Range[n, n + 2]^2), {n, 0, 49}]] (* Alonso del Arte, Oct 27 2012 *)

CoefficientList[Series[(1 - x^2) (1 - x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)

LinearRecurrence[{3, -3, 1}, {1, 5, 14, 29}, 50] (* Harvey P. Dale, Dec 12 2015 *)

PROG

(PARI) sq3nsqp2(n) = { for(x=1, n, y = 3*x*x+2; print1(y, ", ") ) }

(PARI) {a(n) = 3*n^2 + 2 - (n==0)}; /* Michael Somos, Aug 07 2014 */

CROSSREFS

Cf. A120328, A206399.

Sequence in context: A031333 A161437 A047801 * A256666 A211651 A019262

Adjacent sequences:  A005915 A005916 A005917 * A005919 A005920 A005921

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Cino Hilliard, Mar 01 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 12:08 EDT 2017. Contains 284186 sequences.