login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005912
Truncated cube numbers.
(Formerly M5312)
2
1, 56, 311, 920, 2037, 3816, 6411, 9976, 14665, 20632, 28031, 37016, 47741, 60360, 75027, 91896, 111121, 132856, 157255, 184472, 214661, 247976, 284571, 324600, 368217, 415576, 466831, 522136, 581645, 645512, 713891, 786936, 864801, 947640, 1035607, 1128856
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
FORMULA
a(n) = (3*n+1)^3 - 8*(n)*(n+1)*(n+2)/6 = (77/3)*n^3 + 23*n^2 + (19/3)*n + 1.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=56, a(2)=311, a(3)=920. - Harvey P. Dale, Aug 14 2011
MAPLE
A005912:=(1+52*z+93*z**2+8*z**3)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[(3n+1)^3-8(n)(n+1)(n+2)/6, {n, 0, 30}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {1, 56, 311, 920}, 30] (* Harvey P. Dale, Aug 14 2011 *)
PROG
(Haskell)
a005912 n = (n * (n * (77 * n + 69) + 19) + 3) `div` 3 :: Integer
-- Reinhard Zumkeller, Aug 09 2014
(Magma) [(3*n+1)^3-8*(n)*(n+1)*(n+2)/6: n in [0..40]] // Vincenzo Librandi, Aug 09 2014
(PARI) a(n)=(3*n+1)^3-8*(n)*(n+1)*(n+2)/6 \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A110554 A253922 A220015 * A264581 A220202 A104677
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999
STATUS
approved